Successful Application of Customized Fluid Using Specialized Synthetic Polymer in High Pressured Wells to Mitigate Differential Stikcing Problems by Minimizing Pore Pressure Transmission

2014 ◽  
Author(s):  
Mohannad Sulaiman Al-Muhailan ◽  
Arun Rajagopalan ◽  
Al Aziz Khalid Al-Shayji ◽  
Prakash Balkrishna Jadhav ◽  
Faiz Ismail Khatib
2014 ◽  
Author(s):  
Mohannad Sulaiman Al-Muhailan ◽  
Arun Rajagopalan ◽  
Al Aziz Khalid Al-Shayji ◽  
Prakash Balkrishna Jadhav ◽  
Faiz Ismail Khatib

2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Junyi Liu ◽  
Zhengsong Qiu ◽  
Wei’an Huang ◽  
Dingding Song ◽  
Dan Bao

The poly(styrene-methyl methacrylate) latex particles as potential physical shale stabilizer were successfully synthesized with potassium persulfate as an initiator in isopropanol-water medium. The synthesized latex particles were characterized by Fourier transform infrared spectroscopy (FT-IR), particle size distribution measurement (PSD), transmission electron microscopy (TEM), and thermal gravimetric analysis (TGA). FT-IR and TGA analysis confirmed that the latex particles were prepared by polymerization of styrene and methyl methacrylate and maintained good thermal stability. TEM and PSD analysis indicated that the spherical latex particles possessed unimodal distribution from 80 nm to 345 nm with the D90 value of 276 nm. The factors influencing particle size distribution (PSD) of latex particles were also discussed in detail. The interaction between latex particles and natural shale cores was investigated quantitatively via pore pressure transmission tests. The results indicated that the latex particles as potential physical shale stabilizer could be deformable to bridge and seal the nanopores and microfractures of shale to reduce the shale permeability and prevent pore pressure transmission. What is more, the latex particles as potential physical shale stabilizer work synergistically with chemical shale stabilizer to impart superior shale stability.


2014 ◽  
Author(s):  
Luigi Pasquale Moroni ◽  
Stephen R. Vickers ◽  
Christopher Gray ◽  
Marcus Davidson

Measurement ◽  
2016 ◽  
Vol 91 ◽  
pp. 93-100 ◽  
Author(s):  
Iman Rahimzadeh Kivi ◽  
Mohammad Javad Ameri ◽  
Ahmad Ghassemi

Author(s):  
D.T. Grubb

Diffraction studies in polymeric and other beam sensitive materials may bring to mind the many experiments where diffracted intensity has been used as a measure of the electron dose required to destroy fine structure in the TEM. But this paper is concerned with a range of cases where the diffraction pattern itself contains the important information.In the first case, electron diffraction from paraffins, degraded polyethylene and polyethylene single crystals, all the samples are highly ordered, and their crystallographic structure is well known. The diffraction patterns fade on irradiation and may also change considerably in a-spacing, increasing the unit cell volume on irradiation. The effect is large and continuous far C94H190 paraffin and for PE, while for shorter chains to C 28H58 the change is less, levelling off at high dose, Fig.l. It is also found that the change in a-spacing increases at higher dose rates and at higher irradiation temperatures.


Sign in / Sign up

Export Citation Format

Share Document