A review of the Late Quaternary climatic history of Antarctic Seas

Author(s):  
James D. Hays
2003 ◽  
Vol 24 (6) ◽  
pp. 837-843 ◽  
Author(s):  
Chuh Yonebayashi ◽  
Mutsuhiko Minaki

Author(s):  
Cathy Barnosky

The research underway has focused on two different aspects of the environmental history of the Yellowstone/Grand Teton region. One objective has been to examine the long-term vegetational and climatic history of Jackson Hole, the Pinyon Peak Highlands, and Yellowstone Park since the end of late Pinedale glaciation, about 14,000 years ago. Fossil pollen in sediment cores from lakes in the region is being analyzed to clarify the nature and composition of ice-age refugia, the rate and direction of plant migrations in the initial stages of reforestation, and the long-term stability of postglacial communities. Sedimentary charcoal also is being examined to reconstruct fire frequency during different climatic regions and different vegetation types in the past. This information is necessary to assess the sensitivity of plant communities to environmental change and to understand postglacial landscapes of the northern rocky Mountains. The second objective has been a multidisciplinary investigation of the relationship of climate to sedimentation rates in lakes and ponds in Yellowstone, undertaken with Drs. Wright, D.R. Engstrom and S.C. Fritz of the University of Minnesota. This facet of the research examines the relative importance of climate, fire, hillslope erosion induced by overgrazing, and nutrient enrichment in the last 150 years, as recorded in selected lakes in the northern range of Yellowstone. Populations of elk and bison are known to have fluctuated greatly during this interval, and slight climatic changes are suggested from other lines of research. In this study pollen, diatoms, charcoal, sediment chemistry, and sediment accumulation rates are analyzed in short cores from small lakes.


2013 ◽  
Vol 5 (2) ◽  
pp. 1007-1029 ◽  
Author(s):  
J. G. Bockheim

Abstract. The Transantarctic Mountains (TAMs), a 3500 km long chain that subdivides East Antarctica from West Antarctica, are important for reconstructing the tectonic, glacial, and climatic history of Antarctica. With an ice-free area of 24 200 km2 (50% of the total in Antarctica), the TAMs contain an unusually high proportion of paleosols, including relict and buried soils. The unconsolidated paleosols range from late Quaternary to Miocene in age, the semi-consolidated paleosols are of early Miocene to Oligocene age, and the consolidated paleosols are of Paleozoic age. Paleosols on unconsolidated deposits are emphasized in this study. Examples are given from the McMurdo Dry Valleys (78° S) and two outlet glaciers in the central and southern TAMS, including the Hatherton-Darwin Glacier region (80° S) and the Beardmore Glacier region (85° 30' S). Relict soils constitute 73% of all of the soils examined; 10% of the soils featured burials. About 26% of the soils examined are from the last glaciation (< 117 ka) and have not undergone any apparent change in climate. As an example, paleosols comprise 65% of a mapped portion of central Wright Valley. Paleosols in the TAMs feature recycled ventifacts and buried glacial ice in excess of 8 Ma in age; and volcanic ash of Pliocene to Miocene age has buried some soils. Relict soils are more strongly developed than nearby modern soils and often are dry-frozen and feature sand-wedge casts when ice-cemented permafrost was present. The preservation of paleosols in the TAMs can be attributed to cold-based glaciers that are able to override landscapes while causing minimal disturbance.


2001 ◽  
Vol 56 (1) ◽  
pp. 103-111 ◽  
Author(s):  
James P. Doerner ◽  
Paul E. Carrara

AbstractPaleoenvironmental data, including pollen and sediment analyses, radiocarbon ages, and tephra identifications of a core recovered from a fen, provide a ca. 16,500 14C yr B.P. record of late Quaternary vegetation and climate change in the Long Valley area of west-central Idaho. The fen was deglaciated prior to ca. 16,500 14C yr B.P., after which the pollen rain was dominated by Artemisia, suggesting that a cold, dry climate prevailed until ca. 12,200 14C yr B.P. From ca. 12,200 to 9750 14C yr B.P. temperatures gradually increased and a cool, moist climate similar to the present prevailed. During this period a closed spruce–pine forest surrounded the fen. This cool, moist climate was briefly interrupted by a dry and/or cold interval between ca. 10,800 and 10,400 14C yr B.P. that may be related to the Younger Dryas climatic oscillation. From ca. 9750 to 3200 14C yr B.P. the regional climate was significantly warmer and drier than at present and an open pine forest dominated the area around the fen. Maximum aridity occurred after the deposition of the Mazama tephra (ca. 6730 14C yr B.P.). After 3200 14C yr B.P. regional cooling brought cool, moist conditions to the area; the establishment of the modern montane forest around the fen and present-day cool and moist climate began at ca. 2000 14C yr B.P.


Solid Earth ◽  
2013 ◽  
Vol 4 (2) ◽  
pp. 451-459 ◽  
Author(s):  
J. G. Bockheim

Abstract. The Transantarctic Mountains (TAMs), a 3500 km long chain that subdivides East Antarctica from West Antarctica, are important for reconstructing the tectonic, glacial, and climatic history of Antarctica. With an ice-free area of 24 200 km2 (50% of the total in Antarctica), the TAMs contain an unusually high proportion of paleosols, including relict and buried soils. The unconsolidated paleosols range from late Quaternary to Miocene in age, the semi-consolidated paleosols are of early Miocene to Oligocene age, and the consolidated paleosols are of Paleozoic age. Paleosols on unconsolidated deposits are emphasized in this study. Examples are given from the McMurdo Dry Valleys (78° S) and two outlet glaciers in the central and southern TAMS, including the Hatherton–Darwin Glacier region (80° S) and the Beardmore Glacier region (85°30' S). Relict soils constitute 73% of all of the soils examined; 10% of the soils featured burials. About 26% of the soils examined are from the last glaciation (< 117 ka) and have not undergone any apparent change in climate. As an example, paleosols comprise 65% of a mapped portion of central Wright Valley. Paleosols in the TAMs feature recycled ventifacts and buried glacial ice in excess of 8 Ma in age, and volcanic ash of Pliocene to Miocene age has buried some soils. Relict soils are more strongly developed than nearby modern soils and often are dry-frozen and feature sand-wedge casts when ice-cemented permafrost is present. The preservation of paleosols in the TAMs can be attributed to cold-based glaciers that are able to override landscapes while causing minimal disturbance.


Sign in / Sign up

Export Citation Format

Share Document