The Significance of Freshwater Malacofauna of the Churia (Siwalik) Group in Nepal and the Himalayan Upheaval

2020 ◽  
pp. 127-135
Author(s):  
Katsumi Takayasu ◽  
Damayanti Gurung ◽  
Keiji Matsuoka
Keyword(s):  
Tectonics ◽  
2009 ◽  
Vol 28 (5) ◽  
pp. n/a-n/a ◽  
Author(s):  
Yani Najman ◽  
Mike Bickle ◽  
Eduardo Garzanti ◽  
Malcolm Pringle ◽  
Dan Barfod ◽  
...  

2003 ◽  
Vol 28 ◽  
Author(s):  
Naresh Kazi Tamrakar ◽  
Shuichiro Yokota ◽  
Suresh Das Shrestha

Middle Miocene to early Pleistocene sedimentary sequence deposited in the foreland basin of the Himalaya is represented by the Siwalik Group. In the present study area the Siwalik Group extends in a NW-SE direction and well-exposed. Forty­four sandstone samples were studied for texture, fabric and composition in order to assess their petrographic properties and variation trends of these properties in stratigraphic levels. Sandstones were classified into sublitharenite, subarkose, lithic arenite, arkosic arenite and feldspathic graywacke and further thirteen sub-clans. Mean grain size (M) and Trask sorting coefficient (So) increase up-section. Recalculated quartz, matrix, modified maturity index (MMI), total cement (Ct), cement versus matrix index (CMI) and ratio of strong cement over total cement ((Cfc/Cs)/Ct) also increase, whilst packing proximity (PP), packing density (PD) and consolidation factor (Pcc) decrease up-section showing distinct trends, and therefore, these properties are promising in recognizing the older sandstones from the younger ones.


1995 ◽  
Vol 11 ◽  
Author(s):  
S. C. Khosla ◽  
B. N. Upreti ◽  
G. Corvinus
Keyword(s):  

The occurrence of fresh water ostracodes-Candona lactea Baird, Cypria ophthalmica (Jurine), Cyprinotus sp., Jlyocypris gibba (Ramdohr),  Limnocythere sp., and  Potamocypris sp- is  recorded  from the Siwalik Group of Surai Khola Section, southeast of Dang in West Nepal.


1970 ◽  
Vol 31 ◽  
pp. 33-42 ◽  
Author(s):  
Prakash Das Ulak

About 5 km thick Neogene Siwalik Group in the Surai Khola section of west Nepal comprises many fining-upward cycles, which are from several metres to tens of metres thick. However, the Siwalik sequence as a whole reveals a coarseningupward trend. The palaeohydrological reconstruction of the Siwalik Group was based mainly on two parameters: the sediment grain size and the thickness of individual fining-upward successions. The estimated palaeoflow velocity in the Siwalik Group varies from 0.32 to 4.76 m/s, palaeochannel gradient ranges from 5.29x10-5 to 9.59x10-4 m/m, and palaeodischarge fluctuates from 1 to 104 m3/s, in the stratigraphically upward direction. These palaeohydrological parameters indicate a gradual change in fluvial system, presumably owing to the southward propagation of thrusts.


1970 ◽  
Vol 12 ◽  
pp. 63-74 ◽  
Author(s):  
Prakash Das Ulak

This paper describes on lithostratigraphy as well as evolution of the fluvial styles in late Cenozoic Siwalik Group along the Kankai River section of east Nepal Himalaya. The Siwalik Group lies on the southern flank of the Himalaya, is composed of molasse sediments, which were derived from the rising Himalaya in the north. The group along the Kankai River section is lithologically divided into the Lower, Middle and Upper Siwaliks, in ascending order based on increasing grain size and lithology. The Lower Siwaliks is subdivided into the lower and upper members, whereas the Middle Siwaliks is subdivided into the lower, middle and upper members on the basis of the relative thickness of the sandstone and mudstone beds, frequency of occurrence of these beds, and grain size of sandstone. The Upper Siwaliks is subdivided into the lower and upper members based on the clast size in conglomerate and constituent of the Siwalik sandstone boulders in conglomerate. Based on the lithology, assemblages of sedimentary structure and sediment body architectures, seven facies associations (FA1 to FA7) are recognised. These facies associations are closely related to each lithostratigraphic units of the area. The sediments of the lower and upper members of the Lower Siwaliks are products of the fine-grained meandering and flood flow-dominated meandering systems, respectively. The lower, middle and upper members of the Middle Siwaliks are interpreted as the deposits by sandy meandering, deep sandy braided and shallow braided systems, respectively whereas the lower and upper members of the Upper Siwaliks are the products of gravelly braided to debris flow-dominated braided systems, respectively.   doi: 10.3126/bdg.v12i0.2251 Bulletin of the Department of Geology, Vol. 12, 2009, pp. 63-74


2016 ◽  
Vol 51 ◽  
pp. 11-26 ◽  
Author(s):  
Ashok Sigdel ◽  
Tetsuya Sakai

Fluvial sediments of the Siwalik successions in the Himalayan Foreland Basin are one of the most important continental archives for the history of Himalayan tectonics and climate change during the Miocene Period. This study reanalyzes the fluvial facies of the Siwalik Group along the Karnali River, where the large paleo-Karnali River system is presumed to have flowed. The reinterpreted fluvial system comprises fine-grained meandering river (FA1), flood-flow dominated meandering river with intermittent appearance of braided rivers (FA2), deep and shallow sandy braided rivers (FA3, FA4) to gravelly braided river (FA5) and finally debris-flow dominated braided river (FA6) facies associations, in ascending order. Previous work identified sandy flood-flow dominated meandering and anastomosed systems, but this study reinterprets these systems as a flood-flow dominated meandering river system with intermittent appearance of braided rivers, and a shallow sandy braided system, respectively. The order of the appearance of fluvial depositional systems in the Karnali River section is similar to those of other Siwalik sections, but the timing of the fluvial facies changes differs. The earlier appearance (3-4 Ma) of the flood-flow dominated meandering river system in the Karnali River section at about 13.5 Ma may have been due to early uplift of the larger catchment size of the paleo-Karnali River which may have changed the precipitation pattern i.e. intensification of the Indian Summer Monsoon. The change from a meandering river system to a braided river system is also recorded 1 to 3 Ma earlier than in other Siwalik sections in Nepal. Differential and diachronous activities of the thrust systems could be linked to change in catchment area as well as diachronous uplift and climate, the combination of which are major probable causes of this diachronity.


2013 ◽  
Vol 16 ◽  
pp. 53-64 ◽  
Author(s):  
Dev Kumar Syangbo ◽  
Naresh Kazi Tamrakar

Thick sedimentary sequence deposited in the foreland basin of the Nepal Himalaya is represented by the Siwalik Group. The Siwalik Group is well exposed in the Samari-Sukaura River area. The present study is focused in southern portion of the MBT around the Samari-Sukaura area for its depositional environment. The Middle Siwaliks of the Sukaura Road sections is overlained by the Lower Siwaliks which is separated by the Karki Khola Thrust. Extension of the Lower Siwaliks in the Jyamire Khola and the Bundal Khola becomes wider in the eastern Zone. Repetition of the Lower Siwaliks along the southern margin of the MBT is recognized. Depending on lithofacies assemblage and facies analysis, the two broad facies assemblages FA1 and FA2 have been distinguished. FA1 shows SB, FF, LA, LS and CH architectural elements and is interpreted as a product of the fine-grained meandering river system. FA2 shows SB, FF, LA, DA and CH architectural elements and is interpreted as a product of sandy mixed-load meandering river system. DOI: http://dx.doi.org/10.3126/bdg.v16i0.8884   Bulletin of the Department of Geology Vol. 16, 2013, pp. 53-64


Sign in / Sign up

Export Citation Format

Share Document