scholarly journals Lithofacies and depositional environment of the Siwalik Group in Samari-Sukaura River area, Central Nepal

2013 ◽  
Vol 16 ◽  
pp. 53-64 ◽  
Author(s):  
Dev Kumar Syangbo ◽  
Naresh Kazi Tamrakar

Thick sedimentary sequence deposited in the foreland basin of the Nepal Himalaya is represented by the Siwalik Group. The Siwalik Group is well exposed in the Samari-Sukaura River area. The present study is focused in southern portion of the MBT around the Samari-Sukaura area for its depositional environment. The Middle Siwaliks of the Sukaura Road sections is overlained by the Lower Siwaliks which is separated by the Karki Khola Thrust. Extension of the Lower Siwaliks in the Jyamire Khola and the Bundal Khola becomes wider in the eastern Zone. Repetition of the Lower Siwaliks along the southern margin of the MBT is recognized. Depending on lithofacies assemblage and facies analysis, the two broad facies assemblages FA1 and FA2 have been distinguished. FA1 shows SB, FF, LA, LS and CH architectural elements and is interpreted as a product of the fine-grained meandering river system. FA2 shows SB, FF, LA, DA and CH architectural elements and is interpreted as a product of sandy mixed-load meandering river system. DOI: http://dx.doi.org/10.3126/bdg.v16i0.8884   Bulletin of the Department of Geology Vol. 16, 2013, pp. 53-64

2003 ◽  
Vol 28 ◽  
Author(s):  
Naresh Kazi Tamrakar ◽  
Shuichiro Yokota ◽  
Suresh Das Shrestha

Middle Miocene to early Pleistocene sedimentary sequence deposited in the foreland basin of the Himalaya is represented by the Siwalik Group. In the present study area the Siwalik Group extends in a NW-SE direction and well-exposed. Forty­four sandstone samples were studied for texture, fabric and composition in order to assess their petrographic properties and variation trends of these properties in stratigraphic levels. Sandstones were classified into sublitharenite, subarkose, lithic arenite, arkosic arenite and feldspathic graywacke and further thirteen sub-clans. Mean grain size (M) and Trask sorting coefficient (So) increase up-section. Recalculated quartz, matrix, modified maturity index (MMI), total cement (Ct), cement versus matrix index (CMI) and ratio of strong cement over total cement ((Cfc/Cs)/Ct) also increase, whilst packing proximity (PP), packing density (PD) and consolidation factor (Pcc) decrease up-section showing distinct trends, and therefore, these properties are promising in recognizing the older sandstones from the younger ones.


2002 ◽  
Vol 26 ◽  
Author(s):  
Prakash Das Ulak

Middle Miocene to Early Pleistocene fluvial sediments of the Siwalik Group comprises many fining-upward cycles from several to tens of metres thick. It is a foreland basin sediment with a coarsening-upward succession as a whole. The palaeohydrology and evolution of the fluvial depositional system of the group in the Bakiya Khola section of central Nepal was established using the grain size analyses, sedimentary structures and thickness of fining-upward cycles. Stratigraphically from older to younger sequence, the velocity and channel gradient of the palaeofluvial system varies from 0.28 m/s to 3.3 m/s and 2.9x10-5 to 3.4x10-4 m/m, respectively. The progressive changes in palaeovelocity and palaeochannel gradient reflect the southward propagation of thrust activities in the Himalayan front.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Lalit Kumar Rai ◽  
Kohki Yoshida

AbstractThe Siwalik Group, ranging from the Early Miocene to Pleistocene, is believed to be deposited in the fluvial environment and controlled by contemporary Himalayan tectonics and climate. In this study, we established the fluvial environment and its controlling factors responsible for the deposition of the Siwalik succession along the Muksar Khola section in the eastern Nepal Himalaya. Five sedimentary facies associations are identified; these are interpreted as the deposits of flood plain-dominated fine-grained meandering river (FA1), flood-dominated overbank environment (FA2), sandy meandering river (FA3), anastomosing river (FA4), and debris flow-dominated gravelly braided river (FA5). These changes in the fluvial system occurred around 10.5 Ma, 10.0 Ma, 5.9 Ma and 3.5 Ma, defined by existing magnetostratigraphy constraints, due to the effects of hinterland tectonics, climate and sea-level change and continuous drifting of the foreland basin towards the hinterland concerning depositional age. The thick succession of an intraformational conglomerate reveals intensification of the monsoon started around 10.5 Ma in the eastern Nepal Himalaya. The present study also shows asynchronous exhumation of the Himalaya from east to west brought a significant difference in the fluvial environment of the Neogene foreland basin.


1970 ◽  
Vol 12 ◽  
pp. 63-74 ◽  
Author(s):  
Prakash Das Ulak

This paper describes on lithostratigraphy as well as evolution of the fluvial styles in late Cenozoic Siwalik Group along the Kankai River section of east Nepal Himalaya. The Siwalik Group lies on the southern flank of the Himalaya, is composed of molasse sediments, which were derived from the rising Himalaya in the north. The group along the Kankai River section is lithologically divided into the Lower, Middle and Upper Siwaliks, in ascending order based on increasing grain size and lithology. The Lower Siwaliks is subdivided into the lower and upper members, whereas the Middle Siwaliks is subdivided into the lower, middle and upper members on the basis of the relative thickness of the sandstone and mudstone beds, frequency of occurrence of these beds, and grain size of sandstone. The Upper Siwaliks is subdivided into the lower and upper members based on the clast size in conglomerate and constituent of the Siwalik sandstone boulders in conglomerate. Based on the lithology, assemblages of sedimentary structure and sediment body architectures, seven facies associations (FA1 to FA7) are recognised. These facies associations are closely related to each lithostratigraphic units of the area. The sediments of the lower and upper members of the Lower Siwaliks are products of the fine-grained meandering and flood flow-dominated meandering systems, respectively. The lower, middle and upper members of the Middle Siwaliks are interpreted as the deposits by sandy meandering, deep sandy braided and shallow braided systems, respectively whereas the lower and upper members of the Upper Siwaliks are the products of gravelly braided to debris flow-dominated braided systems, respectively.   doi: 10.3126/bdg.v12i0.2251 Bulletin of the Department of Geology, Vol. 12, 2009, pp. 63-74


2016 ◽  
Vol 51 ◽  
pp. 11-26 ◽  
Author(s):  
Ashok Sigdel ◽  
Tetsuya Sakai

Fluvial sediments of the Siwalik successions in the Himalayan Foreland Basin are one of the most important continental archives for the history of Himalayan tectonics and climate change during the Miocene Period. This study reanalyzes the fluvial facies of the Siwalik Group along the Karnali River, where the large paleo-Karnali River system is presumed to have flowed. The reinterpreted fluvial system comprises fine-grained meandering river (FA1), flood-flow dominated meandering river with intermittent appearance of braided rivers (FA2), deep and shallow sandy braided rivers (FA3, FA4) to gravelly braided river (FA5) and finally debris-flow dominated braided river (FA6) facies associations, in ascending order. Previous work identified sandy flood-flow dominated meandering and anastomosed systems, but this study reinterprets these systems as a flood-flow dominated meandering river system with intermittent appearance of braided rivers, and a shallow sandy braided system, respectively. The order of the appearance of fluvial depositional systems in the Karnali River section is similar to those of other Siwalik sections, but the timing of the fluvial facies changes differs. The earlier appearance (3-4 Ma) of the flood-flow dominated meandering river system in the Karnali River section at about 13.5 Ma may have been due to early uplift of the larger catchment size of the paleo-Karnali River which may have changed the precipitation pattern i.e. intensification of the Indian Summer Monsoon. The change from a meandering river system to a braided river system is also recorded 1 to 3 Ma earlier than in other Siwalik sections in Nepal. Differential and diachronous activities of the thrust systems could be linked to change in catchment area as well as diachronous uplift and climate, the combination of which are major probable causes of this diachronity.


EKSPLORIUM ◽  
2017 ◽  
Vol 38 (1) ◽  
pp. 29
Author(s):  
Heri Syaeful ◽  
Adi Gunawan Muhammad

ABSTRAKKegiatan karakterisasi material bawah permukaan penyusun pondasi tapak merupakan bagian dari studi tapak instalasi nuklir. Karakterisasi dilakukan dengan berbagai metode, diantaranya pemahaman tentang sistem pengendapan formasi batuan. Sebagai bagian dari metode interpretasi lingkungan pengendapan, analisis pemodelan fasies berdasarkan elektrofasies memberikan informasi yang cepat mengenai sistem pengendapan suatu formasi batuan. Metodologi yang digunakan adalah dengan interpretrasi log sinar gamma (log GR) menggunakan korelasi relatif antara variasi bentuk log dan fasies sedimentasi. Berdasarkan analisis diketahui Formasi Bojongmanik terbentuk pada lingkungan marine-lagoonal dengan pengaruh gelombang sangat rendah. Log GR yang menunjukan bentuk funnel, bergerigi dan simetris, mengindikasikan fasies shoreface, lagoon, dan tidal point bar. Arah sedimentasi, cekungan, dan suplai pada pengendapan sedimen Formasi Bojongmanik diinterpretasikan relatif ke utara. Formasi Serpong diendapkan pada sistem sungai bermeander dan tersusun atas endapan point bar, crevasse splay dan floodplain. Hasil analisis ini diharapkan dapat menjadi panduan dalam analisis lanjutan terkait karakterisasi material pondasi. ABSTRACTThe activity of subsurface material composing site foundation characterization is part of nuclear installation siting study. Characterization conducted by several methods, such as understanding the depositional environment of rock formations. As a segment of depositional environment interpretation method, facies model analysis based on electrofacies provides quicker information on depositional system of rock formation. Methodology applied is gamma ray log (log GR) interpretation using relative correlation between log shape variation and sedimentation facies. Based on the analysis, Bojongmanik Formation was deposited on marine-lagoonal environment with very low wave influence. Log GR that shows shape of funnel, serrated, and symmetry, indicate shoreface, lagoon, and tidal point bar facies. The direction of sedimentation, basin, and supply of Bojongmanik Formation interpreted relatively to the north. Serpong Formation deposited on meandering river system, and composed of point bar deposit, crevasse splay, and floodplain deposit. The result of analysis is expected to be guidance in further analysis related to the characterization of foundation materials.


2009 ◽  
Vol 39 ◽  
Author(s):  
Prakash Das Ulak

Neogene fluvial sedimentary sequences of the Siwalik Group are extensively accumulated in the southern frontal part of the Himalaya and well exposed in the Tinau Khola section of the west-central Nepal Himalaya. The group reveals a coarsening­ upwards succession in general but many fining-upwards fluvial successions on a scale from several to tens of metres is established in each lithological unit. The paleohydrological characteristics have been estimated using thickness of fining upwards fluvial successions, their grain diameters, and bedforms. The paleohydrology suggests an increase in flow velocity, channel slope gradient, and discharge of the fluvial system. Paleovelocity varies from 0.17 to 5.31 m/s, paleochannel gradient and paleodischarge change from l.13x10-5 to 7.33x10-4 m/m and 101 to 104 m3/s, respectively towards the stratigraphic top. These progressively changing paleohydrological characteristics reflect the southward propagation of thrusts caused by the upheaval of the Himalaya.


2016 ◽  
Vol 51 ◽  
pp. 59-72
Author(s):  
Prakash Das Ulak

This paper focuses on evolution of the fluvial system in the late Cenozoic Siwalik Group along the Kankai River section of East Nepal. The Siwalik Group lies on the southern flank of the Himalaya and composed of molasse sediments, which were derived from upheaval of the Himalaya. On the basis of lithology, assemblage of sedimentary structures and sediment body architectures, seven facies associations (FA1 to FA7) are recognized in the Kankai River section, East Nepal Himalaya. These recognized facies associations are closely related to each lithostratigraphic units of the area (Ulak 2009). The lower and upper members of the Lower Siwaliks are the products of the fine-grained meandering and flood flow-dominated meandering systems, respectively. The lower, middle and upper members of the Middle Siwaliks are interpreted as the deposits of the sandy meandering, deep sandy braided and shallow braided systems, respectively whereas the lower and upper members of the Upper Siwaliks are the products of the gravelly braided and debris flow-dominated braided systems, respectively. Paleohydrological characteristics and its evolutional changes of the group have been estimated by using grain diameter and thickness of fining upward fluvial successions. The paleohydrology suggests an increase in of flow velocity, channel slope gradient, and discharge of the fluvial system. Paleovelocity varies from 0.19 m/s to 5.31 m/s paleochannel gradient and paleodischarge changes from 6.67x10-5 to 2.97x10-4 m/m and 101 to 104 m3/s, respectively in stratigraphic upward. The progressively changes in the paleohydrology reflect the southward propagation of thrust activities, caused upheaval of the Himalaya.


2021 ◽  
Author(s):  
Lalit Kumar Rai ◽  
Kohki Yoshida

Abstract The Siwalik Group, ranging from the Early Miocene to Pleistocene, is believed to be controlled by contemporary Himalayan tectonics and climate. In this study, we established the fluvial system responsible for the deposition of the Siwalik succession along the Muksar Khola section and its controlling factors. Five sedimentary facies associations are identified which are interpreted as the deposits of flood plain dominated fine-grained meandering river (FA1), flood dominated overbank environment (FA2), sandy meandering river (FA3), anastomosing river (FA4), and debris flow dominated gravelly braided river (FA5). These change in fluvial style occurred around 10.5 Ma, 10.0 Ma, 5.9 Ma and 3.5 Ma due to the effects of hinterland tectonics, climate and sea-level change. The thick succession of intraformational conglomerate reveals the intensification of monsoon started around 10.5 Ma in the eastern Nepal Himalaya. The present study show asynchronous exhumation of the Himalaya east to west brought significant difference on the fluvial environment of the Neogene foreland basin. Moreover, this study also reveals continuous drifting of the foreland basin towards the hinterland concerning depositional age.


2013 ◽  
Vol 46 ◽  
Author(s):  
Khum N. Paudayal

The palynological study of the Rapti Formation and Amlekhganj Formation from the Siwalik Group in the Dudhaura Khola section revealed plethora of information to interpret the past vegetation and climate existed during Late Miocene in the southern margin of the Nepal Himalaya. Altogether 30 samples were collected from Rapti Formation and Amlekhganj Formations exposed in the Dudhaura Khola section for the palynological study. Palynological assemblages recovered from the upper part of Rapti Formation and lower part of Amlekhganj Formation consist of 5 families and 10 genera from monocotyledon, 8 families and 14 genera from dicotyledon, 1 family and 4 genera from Gymnosperm and 5 families from Pteridophytes. High presence of Palm pollen and Ceratopteris spores in the Rapti Formation and Amlekhganj Formation suggests that the climate was warm and humid. The riverine vegetation is documented by the presence of Alnus, Typha, Potamogeton, Liliaceae and Poaceae.The frequency of zygnemataceous spores is common in the Rapti Formation while it is decreases towards the bottom part of the Amlekhganj Formation. There is little gymnosperm pollen in the Amlekhganj Formation but their frequency and distribution is very less. This suggests change of vegetation pattern from tropical-subtropical forest to lower temperate forest during the deposition of Amlekhganj Formation and after wards.


Sign in / Sign up

Export Citation Format

Share Document