A new macroelement-based strategy for modelling reinforced masonry piers

Author(s):  
S. Bracchi ◽  
M. Mandirola ◽  
M. Rota ◽  
A. Penna
Keyword(s):  
2021 ◽  
Vol 11 (10) ◽  
pp. 4421
Author(s):  
Zhiming Zhang ◽  
Fenglai Wang

In this study, four single-story reinforced masonry shear walls (RMSWs) (two prefabricated and two cast-in-place) under reversed cyclic loading were tested to evaluate their seismic performance. The aim of the study was to evaluate the shear behavior of RMSWs with flanges at the wall ends as well as the effect of construction method. The test results showed that all specimens had a similar failure mode with diagonal cracking. However, the crack distribution was strongly influenced by the construction method. The lateral capacity of the prefabricated walls was 12% and 27% higher than that of the corresponding cast-in-place walls with respect to the rectangular and T-shaped cross sections. The prefabricated walls showed better post-cracking performance than did the cast-in-place wall. The secant stiffness of all the walls decreased rapidly to approximately 63% of the initial stiffness when the first major diagonal crack was observed. The idealized equivalent elastic-plastic system showed that the prefabricated walls had a greater displacement ductility of 3.2–4.8 than that of the cast-in-place walls with a displacement ductility value of 2.3–2.7. This proved that the vertical joints in prefabricated RMSWs enhanced the seismic performance of walls in shear capacity and ductility. In addition, the equivalent viscous damping of the specimens ranged from 0.13 to 0.26 for prefabricated and cast-in-place walls, respectively.


2021 ◽  
Vol 242 ◽  
pp. 112569
Author(s):  
Zhiming Zhang ◽  
Juan Murcia-Delso ◽  
Cristián Sandoval ◽  
Gerardo Araya-Letelier ◽  
Fenglai Wang

2014 ◽  
Vol 51 ◽  
pp. 492-505 ◽  
Author(s):  
I. Basilio ◽  
R. Fedele ◽  
P.B. Lourenço ◽  
G. Milani
Keyword(s):  

1977 ◽  
Vol 67 (5) ◽  
pp. 1441-1472
Author(s):  
R. Husid ◽  
A. F. Espinosa ◽  
J. de las Casas

abstract The October 3, 1974, earthquake caused severe damage to buildings of adobe and quincha construction, and also to masonry, reinforced masonry, and reinforced-concrete structures in Lima and vicinity. Most of the damage to well-built structures was due, in part, to the lack of lateral resistance in the original design and to the fact that this earthquake had more energy around 0.4 seconds period than prior destructive earthquakes. Water tanks on the roofs of structures with four or five stories were damaged. Well-engineered single-story buildings were less affected than taller structures. Considerable structural damage to reinforced-concrete structures occurred in the districts of Barranco, La Campiña Molina, and Callao. In La Campiña three-story building partly collapsed and other buildings sustained considerable damage. In La Molina, the buildings of the Agrarian University sustained severe damage, and some collapsed. In Surco, the district adjacent to La Molina, there was no appreciable damage. In Callao, a four-story building collapsed, and the upper half of a concrete silo collapsed. In reinforced-concrete structures, column ties were frequently small in diameter, widely spaced, and not well connected. Usually, the reinforcement of resisting elements had no relation to their stiffnesses. Front columns in school buildings were restrained by high brick walls and had rather short effective lengths to allow building displacement in that direction. The windows in the rear walls gave the rear columns a much greater effective length. Therefore, a longitudinal displacement induces large shear forces in the front columns where most of the severe damage occurred. This problem was not considered in the design of these structures.


Sign in / Sign up

Export Citation Format

Share Document