Sulphate Radical-Based Advanced Oxidation Process for Treatment of Organic Contaminants from Industrial Saline Wastewater

2021 ◽  
pp. 351-374
Author(s):  
M. Venkata Ratnam ◽  
K. Nagamalleswara Rao ◽  
K. Senthil Kumar ◽  
Shaik Feroz
2018 ◽  
Vol 4 (10) ◽  
pp. 1389-1411 ◽  
Author(s):  
Moses G. Peleyeju ◽  
Omotayo A. Arotiba

Electrochemical advanced oxidation process and heterogeneous photocatalysis have received great attention in the last few years as alternative/complementary water treatment technologies.


2007 ◽  
Vol 55 (12) ◽  
pp. 229-235 ◽  
Author(s):  
I. Oller ◽  
S. Malato ◽  
J.A. Sánchez-Pérez ◽  
M.I. Maldonado ◽  
W. Gernjak ◽  
...  

Two advanced oxidation processes (AOPs), ozonation and photo-Fenton, combined with a pilot aerobic biological reactor at field scale were employed for the treatment of industrial non-biodegradable saline wastewater (TOC around 200 mg L−1) containing a biorecalcitrant compound, α-methylphenylglycine (MPG), at a concentration of 500 mg L−1. Ozonation experiments were performed in a 50-L reactor with constant inlet ozone of 21.9 g m−3. Solar photo-Fenton tests were carried out in a 75-L pilot plant made up of four compound parabolic collector (CPC) units. The catalyst concentration employed in this system was 20 mg L−1 of Fe2 +  and the H2O2 concentration was kept in the range of 200–500 mg L−1. Complete degradation of MPG was attained after 1,020 min of ozone treatment, while only 195 min were required for photo-Fenton. Samples from different stages of both AOPs were taken for Zahn–Wellens biocompatibility tests. Biodegradability enhancement of the industrial saline wastewater was confirmed (>70% biodegradability). Biodegradable compounds generated during the preliminary oxidative processes were biologically mineralised in a 170-L aerobic immobilised biomass reactor (IBR). The global efficiency of both AOP/biological combined systems was 90% removal of an initial TOC of over 500 mg L−1.


Sign in / Sign up

Export Citation Format

Share Document