Cover Crop Mixes for Diversity, Carbon and Conservation Agriculture

Author(s):  
DC Reicosky ◽  
Ademir Calegari ◽  
Danilo Rheinheimer dos Santos ◽  
Tales Tiecher
2010 ◽  
Vol 46 (3) ◽  
pp. 309-325 ◽  
Author(s):  
C. THIERFELDER ◽  
P. C. WALL

SUMMARYConservation agriculture (CA) systems are based on minimal soil disturbance, crop residue retention and crop rotation. Although the capacity of rotations to break pest and disease cycles is generally recognized, other benefits of crop rotations in CA systems are seldom acknowledged and little understood. We monitored different conventional and CA cropping systems over the period from 2005 to 2009 in a multi-seasonal trial in Monze, southern Zambia. Both monocropped maize and different maize rotations including cotton and the green manure cover crop sunnhemp (Crotalaria juncea) were compared under CA conditions, with the aim of elucidating the effects of crop rotations on soil quality, soil moisture relations and maize productivity. Infiltration, a sensitive indicator of soil quality, was significantly lower on conventionally ploughed plots in all cropping seasons compared to CA plots. Higher water infiltration rate led to greater soil moisture content in CA maize treatments seeded after cotton. Earthworm populations, total carbon and aggregate stability were also significantly higher on CA plots. Improvements in soil quality resulted in higher rainfall use efficiency and higher maize grain yield on CA plots especially those in a two- or three-year rotation. In the 2007/08 and 2008/2009 season, highest yields were obtained from direct-seeded maize after sunnhemp, which yielded 74% and 136% more than maize in the conventionally ploughed control treatment with a continuous maize crop. Even in a two-year rotation (maize-cotton), without a legume green manure cover crop, 47% and 38% higher maize yields were recorded compared to maize in the conventionally ploughed control in the two years, respectively. This suggests that there are positive effects from crop rotations even in the absence of disease and pest problems. The overall profitability of each system will, however, depend on markets and prices, which will guide the farmer's decision on which, if any, rotation to choose.


2016 ◽  
Vol 81 ◽  
pp. 47-56 ◽  
Author(s):  
Blessing Mhlanga ◽  
Stephanie Cheesman ◽  
Bhagirath Singh Chauhan ◽  
Christian Thierfelder

2016 ◽  
Vol 78 ◽  
pp. 93-101 ◽  
Author(s):  
Blessing Mhlanga ◽  
Stephanie Cheesman ◽  
Barbara Maasdorp ◽  
Walter Mupangwa ◽  
Colleta Munyoro ◽  
...  

2012 ◽  
Vol 26 (3) ◽  
pp. 490-498 ◽  
Author(s):  
Andrew J. Price ◽  
Kip S. Balkcom ◽  
Leah M. Duzy ◽  
Jessica A. Kelton

Conservation agriculture (CA) practices are threatened by glyphosate-resistant Palmer amaranth. Integrated control practices including PRE herbicides and high-residue CA systems can decreaseAmaranthusemergence. Field experiments were conducted from autumn 2006 through crop harvest in 2009 at two sites in Alabama to evaluate the effect of integrated weed management practices onAmaranthuspopulation density and biomass, cotton yield, and economics in glyphosate-resistant cotton. Horizontal strips included four CA systems with three cereal rye cover crop seeding dates and a winter fallow (WF) CA system compared to a conventional tillage (CT) system. Additionally, vertical strips of four herbicide regimes consisted of: broadcast, banded, or no PRE applications ofS-metolachlor (1.12 kg ai ha−1) followed by (fb) glyphosate (1.12 kg ae ha−1) applied POST fb layby applications of diuron (1.12 kg ai ha−1) plus MSMA (2.24 kg ai ha−1) or the LAYBY application alone. Early-seasonAmaranthusdensity was reduced in high-residue CA in comparison to the CA WF systems in 2 of 3 yr.Amaranthusdensities in herbicide treatments that included a broadcast PRE application were lower at three of five sampling dates compared to banding early-season PRE applications; however, the differences were not significant during the late season and cotton yields were not affected by PRE placement. High-residue conservation tillage yields were 577 to 899 kg ha−1more than CT, except at one site in 1 yr when CT treatment yields were higher. CA utilizing high-residue cover crops increased net returns over CT by $100 ha−1or more 2 out of 3 yr at both locations. High-residue cover crop integration into a CA system reducedAmaranthusdensity and increased yield over WF systems; the inclusion of a broadcast PRE application can increase early-seasonAmaranthuscontrol and might provide additional control when glyphosate-resistantAmaranthuspopulations are present.


Author(s):  
Carlo Camarotto ◽  
Ilaria Piccoli ◽  
Nicola Dal Ferro ◽  
Riccardo Polese ◽  
Francesca Chiarini ◽  
...  

2021 ◽  
Author(s):  
Ernst H. Smit ◽  
Johann A. Strauss ◽  
Pieter Andreas Swanepoel

Abstract PurposeCover crops can provide multiple agroecosystem services to crops produced in conservation agriculture systems. South African grain producers in the Mediterranean climate region are reluctant to integrate cover crops in rainfed systems since cover crops replace cash crops leading to financial losses. Using cover crops as fodder can help cover input costs, while providing a range of advantageous services to the cropping system. The aim of this study was to investigate how cover crop mixtures and the utilisation of cover crops affect soil quality, the quality and quantity of the mulch as well as wheat (Triticum aestivum L.) produced in the subsequent year.MethodsA two-year study was conducted in the Western Cape Province of South Africa. In Year 1, diverse legume and cereal-based cover crop mixtures were partially grazed, cut and material removed for haymaking, or left unutilised as a mulch. In Year 2, spring wheat (Triticum aestivum L.) was planted to investigate the effects of cover crop mixtures and utilisation method on subsequent spring wheat yield. ResultsCover crops used as hay or for grazing did not affect (P < 0.05) grain yield of wheat that followed in rotation. Legume-based cover crop mixtures increased (P < 0.05) wheat grain protein content regardless of utilisation method. Soil quality and nitrogen content improved (P < 0.05) when cover crops were grazed. ConclusionsCover cropping can be used by South African grain producers as an important agronomic tactic to improve system productivity and support sustainable intensification of rainfed cropping systems.


2021 ◽  
Author(s):  
Felice Sartori ◽  
Ilaria Piccoli ◽  
Riccardo Polese ◽  
Antonio Berti

Abstract. Conservation agriculture (CA) relies on two key practices to improve agricultural sustainability—reduced tillage and cover crop usage. Despite known soil physics benefits (reduced soil compaction and strength, enhanced soil porosity and permeability), inconsistent reports on short-term CA results have limited its adoption in European agroecosystems. To elucidate the short-term effects, a three-year experiment in the low-lying Venetian plain (Northern Italy) was undertaken. Bulk density, penetration resistance, and soil hydraulic measures were used to evaluate results obtained by combining three tillage intensities (conventional tillage (CT), minimum tillage (MT), no tillage (NT)) with three winter soil coverages (bare soil (BS), tillage radish cover crop (TR), winter wheat cover crop (WW)). Among the tillage methods and soil layers, CT, on average, reduced BD (1.42 g cm−3) and PR (1.64 MPa) better in the 0–30 cm tilled layer. Other treatments yielded higher values (+4 % BD and +3.1 % PR) in the same layer. Across the soil profile, reduced tillage coupled with WW improved soil physics even below the tilled layer, as evidenced by root growth-limiting threshold declines (−11 % in BD values > 1.55 g cm−3 and −7 % in PR values > 2.5 MPa). Soil hydraulic measures confirmed this positive behaviour; NT combined with either BS or WW produced a soil saturated conductivity of 2.12 × 10−4 m s−1 (four-fold that of all other treatments). Likewise, sorptivity increased in NT combined with BS versus other treatments (3.64 × 10−4 m s−1 vs an all-treatment average of 7.98 × 10−5 m s−1). Our results suggest that despite some measure declines due to reduced tillage, the strategy enhances soil physics. In the short term, cover crop WW moderately increased physical soil parameters, whereas TR had negligible effects. This study demonstrates that CA effects require monitoring several soil physical parameters.


2017 ◽  
Vol 31 (2) ◽  
pp. 260-268 ◽  
Author(s):  
Rodrigo Martinelli ◽  
Patrícia A. Monquero ◽  
Anastácia Fontanetti ◽  
Patrícia M. Conceição ◽  
Fernando A. Azevedo

The citrus yield in Brazil is not ranked among the best in the world, potentially due to inadequate management by citrus growers. The low adoption of conservation agriculture (CA) techniques and the improper application of herbicides are also well-known problems. Thus, this study evaluated the use of CA techniques, and twoUrochloaspecies (ruzi grass and signal grass) were used as cover crops. Two different types of mowers (ecological, EM; conventional, CM) launched the mowed biomass into different positions within a young Tahiti acid lime orchard (up to four years old). In addition, the integration of glyphosate into this management system was evaluated, with (GLY) and without (NO GLY) glyphosate application. This experiment was conducted across three growing seasons (2011-2014), in Mogi Mirim, São Paulo State, Brazil. The cover crop biomass yields and the effects of the mowing treatments, weed density, vegetative growth and fruit yields of the Tahiti acid lime trees were evaluated. In terms of major results, signal grass produced higher biomass yield values (up to 64%) than ruzi grass; EM promoted higher mowed biomass values in the intra-row (up to 5.1 ton ha−1, 9.0 times higher than CM), and a higher canopy volume (up to 33% than CM). These results were enhanced when ruzi grass was associated with the EM (56% lower weed density; 126% higher fruit yield than CM) and with GLY (52% higher fruit yield than NO GLY); and EM with GLY (43% lesser weed density and 107% higher fruit yield than NO GLY). Overall, ruzi grass was a good cover crop because it provided less competition for the citrus trees, EM provided a mulch layer in the intra-row of the citrus trees, and associated with GLY, these approaches could provide options for an integrated and more sustainable weed management, primarily for young Tahiti acid lime orchards.


Sign in / Sign up

Export Citation Format

Share Document