Optimum bending and shear stiffness distribution for performance based design of rigid and braced multi-story steel frames

Author(s):  
C.J. Gantes ◽  
I. Vayas ◽  
A. Spiliopoulos ◽  
C.C. Pouangare
Author(s):  
Carlos Couto ◽  
Thiago Silva ◽  
Martina Carić ◽  
Paulo Vila Real ◽  
Davor Skejić

<p>According to the Eurocode 3 Part 1-2 (EN1993-1-2) (CEN 2005b), it is possible for structural engineers to consider physical based thermal actions and to do performance based design instead of using prescriptive rules based on nominal fire curves. However, some uncertainties remain in the use of such approaches. This study focus on the clarification of the use of the simplified design methods to assess the fire resistance of unbraced steel frames exposed to fire. On the other hand, a recent study (Couto et al. 2013) suggests the use of a buckling coefficient of 1.0 for all the columns except those belonging to the first storey of a pinned framed where 2.0 should be taken instead and it is unclear if the consideration of such values for the buckling lengths is adequate when using performance based designs.</p>In this study, a comparison is made between simple and advanced calculation models and it is demonstrated that the simple design methods, using the suggested buckling coefficients to calculate the fire resistance of the frames are safe sided when compared to the use of advanced calculations using the finite element method (FEM).


2019 ◽  
Vol 23 (3) ◽  
pp. 411-423 ◽  
Author(s):  
Xingfeng Wang ◽  
Qing Zhang ◽  
Xianrong Qin ◽  
Yuantao Sun

Performance-based design optimization of steel frames, with element sections selected from standard sections, is a computationally intensive task. In this article, an efficient discrete optimization algorithm is proposed for performance-based design optimization of steel frames. The computational efficiency is improved by searching in a sensible manner, guided by the deformation information of structural elements. To include all standard sections in the design space, the cross-sectional area ( Area) and moment of inertia ( Ix) are selected as the design variables. Based on different relationships between Area and Ix, a twofold strategy is put forward, which includes a quick exploration and an elaborate exploitation. For comparison, a similar algorithm is also proposed, using Area as the only design variable. A fixed relationship between Area and other sectional properties is used. Two numerical examples are presented to minimize the structural weight while satisfying performance constraints. The results indicate that the proposed discrete algorithm can achieve lighter structural designs than the area-only algorithm. Furthermore, the convergence history proves that a high computational efficiency can be realized by using the proposed algorithm.


2001 ◽  
Vol 1 (4) ◽  
pp. 377-392
Author(s):  
C.J. Gantes ◽  
I. Vayas ◽  
A. Spiliopoulos ◽  
C.C. Pouangare

2020 ◽  
Vol 25 (12) ◽  
pp. 2252-2262
Author(s):  
Boris Desmorat ◽  
Mario Spagnuolo ◽  
Emilio Turco

Mechanical metamaterials are microstructured mechanical systems showing an overall macroscopic behaviour that depends mainly on their microgeometry and microconstitutive properties. Moreover, their exotic properties are very often extremely sensitive to small variations of mechanical and geometrical properties in their microstructure. Clearly, the methods of structural optimization, once combined with the techniques used to describe multiscale systems, are expected to determine a dramatic improvement in the quality of newly designed metamaterials. In this paper, we consider, only as a demonstrative example, planar pantographic structures which have proved to be extremely tough in extension, To describe pantographic structure behaviour in an efficient way, it has been proposed to use Piola–Hencky-type Lagrangian models, in which the understanding of the mechanics of involved microdeformation processes allows for the formulation of efficient numerical codes. In this paper, we prove that it is possible, via a suitable choice of the macroscopic shear stiffness, to increase the maximal elongation of pantographic structures, in the standard bias test, before the occurrence of rupture phenomena. The basic tool employed to this aim is a constrained optimization algorithm, which uses the numerical tool, previously developed for determining equilibrium shapes, as a subroutine. Actually, one looks for the shear stiffness distribution, which, given the imposed elongation of the pantographic structure and the force applied to it by the used hard device, minimizes the total elongation energy. The so-optimized shear stiffness distribution does prove able to extend the range of imposed elongations that the specimen can experience while remaining undamaged.


Author(s):  
Arzhang Alimoradi ◽  
Shahram Pezeshk ◽  
Christopher M. Foley

Author(s):  
Dario De Domenico ◽  
Iman Hajirasouliha

AbstractThis paper presents a practical multi-level performance-based optimisation method of nonlinear viscous dampers (NVDs) for seismic retrofit of existing substandard steel frames. A Maxwell model is adopted to simulate the behaviour of the combined damper-supporting brace system, with a fractional power-law force–velocity relationship for the NVDs, while a distributed-plasticity fibre-based section approach is used to model the beam-column members thus incorporating the nonlinearity of the parent steel frame in the design process. The optimum height-wise distribution of the damping coefficients of NVDs satisfying given performance requirements is identified via a uniform damage distribution (UDD) design philosophy. The efficiency of the proposed multi-level performance-based design optimisation is illustrated through nonlinear time-history analysis of 3-, 7- and 12-storey steel frames under both artificial and natural spectrum-compatible earthquakes. Sensitivity analysis is performed to investigate the effects of initial height-wise damping distribution, convergence factor and uncertainty in design ground-motion prediction on the optimisation strategy. The efficiency of the final optimum design solution is also investigated by using drift-based, velocity-based, and energy-based UDD approaches to identify the most efficient performance index parameter for optimisation purposes. It is found that regardless of the selected performance parameter, the optimum damping distribution identified by the proposed methodology leads to frames exhibiting lower maximum inter-storey drift, local damage (maximum plastic rotation) and global damage index compared to an equal-cost uniform damping distribution. However, using drift-based UDD approach generally results in a better seismic performance. It is shown that the proposed UDD optimisation method can be efficiently used to satisfy multiple performance objectives at different intensity levels of the earthquake excitation, in line with performance-based design recommendations of current seismic codes. The proposed method is easy to implement for practical design purposes and represents a simple yet efficient tool for optimum seismic retrofit of steel frames with NVDs.


Sign in / Sign up

Export Citation Format

Share Document