total elongation
Recently Published Documents


TOTAL DOCUMENTS

225
(FIVE YEARS 78)

H-INDEX

11
(FIVE YEARS 5)

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 104
Author(s):  
Zhirui Wei ◽  
Haijiang Hu ◽  
Man Liu ◽  
Junyu Tian ◽  
Guang Xu

The microstructure and wear performance of a low-carbon steel treated by austempering below and above martensite start temperature (Ms) were investigated. The results show that the bainite, fresh martensite (FM) and retained austenite (RA) were observed in samples austempered above Ms. Except for the three above phases, the athermal martensite (AM) was also observed in samples austempered below Ms. The bainite transformation was accelerated and finer bainite was obtained due to the AM formation in samples austempered below Ms. In addition, the strength and hardness were improved with the decrease of the isothermal temperature and time, whereas the total elongation decreased with the increasing isothermal time and the decreasing isothermal temperature. Moreover, the materials austempered below Ms exhibited better wear performance than the ones treated above Ms, which is attributed to the improved impact toughness by the finer bainite and the enhanced hardness by AM. The best wear resistance was obtained in the samples austempered at 300 °C below Ms for 200 s, due to the highest hardness and considerable impact toughness.


Author(s):  
Bogusława Adamczyk-Cieślak ◽  
Milena Koralnik ◽  
Roman Kuziak ◽  
Kamil Majchrowicz ◽  
Tomasz Zygmunt ◽  
...  

AbstractThis paper presents the microstructural changes and mechanical properties of carbide-free bainitic steel subjected to various heat treatment processes and compares these results with similarly treated ferritic–pearlitic steel. A key feature of the investigated steel, which is common among others described in the literature, is that the Si content in the developed steel was >1 wt.% to avoid carbide precipitation in the retained austenite during the bainitic transformation. The phase identification before and after various heat treatment conditions was carried out based on microstructural observations and x-ray diffraction. Hardness measurements and tensile tests were conducted to determine the mechanical properties of the investigated materials. In addition, following the tensile tests, the fracture surfaces of both types of steels were analyzed. Changing the bainitic transformation temperature generated distinct volume fractions of retained austenite and different values of mechanical strength properties. The mechanical properties of the examined steels were strongly influenced by the volume fractions and morphological features of the microstructural constituents. It is worth noting that the bainitic steel was characterized by a high ultimate tensile strength (1250 MPa) combined with a total elongation of 18% after austenitizing and continuous cooling. The chemical composition of the bainitic steel was designed to obtain the optimal microstructure and mechanical properties after hot deformation followed by natural cooling in still air. Extensive tests using isothermal transformation to bainite were conducted to understand the relationships between transformation temperature and the resulting microstructures, mechanical properties, and fracture characteristics. The isothermal transformation tests indicated that the optimal relationship between the sample strength and total elongation was obtained after bainitic treatment at 400 °C. However, it should be noted that the mechanical properties and total elongation of the bainitic steel after continuous cooling differed little from the condition after isothermal transformation at 400 °C.


2021 ◽  
Vol 7 (12) ◽  
pp. 111639-111651
Author(s):  
Ana Carla Cordeiro ◽  
Wyrllen Everson De Souza ◽  
Gabriel Henrique Testa ◽  
Eduardo Giometti Bertogna

Ultra-weak photon emission (UWPE) is used to evaluate the effects of silver nanoparticles (AgNP) on wheat seeds germination. Three test series, using wheat seed samples in triplicate, irrigated by three different solutions: AgNP colloid, deionized water and sodium citrate dihydrate solution, had their UWPE data acquired for 24 hours at the fifth day of germination, inside an especially designed dark chamber.  The photon-counts summation of each test was calculated, and correlated to its respective germination parameters – total biomass gain and total elongation of seedling aerial part. AgNP tests presented inferior total photon-counts summation and germination parameters levels, as compared to the tests using the other two solutions. Besides, the UWPE temporal profiles decreased over time for the AgNP tests, while for the other two test solutions the emission increased over time. Those results points changes in physiologic functions as deleterious effects of the AgNP contaminant. Principal Component Analysis (PCA) was applied, and the AgNP tests could be separated of the other tests due to germination parameters and UWPE data. The proposed method using UWPE measurements seems to be feasible to evaluate germination parameters of wheat seed in the presence of AgNP, and potentially in the presence of other contaminants.


Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 21
Author(s):  
Jingjing Liu ◽  
Denghui Liu ◽  
Xiurong Zuo ◽  
Lihua Liu ◽  
Qiangjun Yan

High-strength, wear-resistant steel often suffers from delayed cracking after flame cutting. Delayed cracking can lead to extremely harmful sudden brittle fracture; therefore, it is necessary to study the formation of delayed cracking in high-strength steel. This work investigated the influence of TiN inclusions and segregation on the delayed cracking in NM450 wear-resistant steel by optical microscopy, scanning electron microscopy, X-ray diffraction, transmission electron microscopy and electron backscattered diffractometer methods. The results indicated that the delayed cracks originated from the segregation zones (SZs) containing multiple high-hardness segregation bands. The tensile strength of the SZ specimens was higher than that of non-segregation zone (NSZ) specimens, while the total elongation and reduction of area of the SZ specimens were relatively lower compared with the NSZ specimens. Therefore, the delayed cracking on the flame cutting surface of the NM450 steel plate was attributed to the existence of SZs that contain a high density of dislocations and considerable micro-sized TiN inclusions.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7752
Author(s):  
Xiongfei Yang ◽  
Hao Yu ◽  
Chenghao Song ◽  
Lili Li

Transformation Induced Plasticity (TRIP)-assisted annealed martensitic (TAM) steel sheets with various microalloying additions such as niobium, vanadium, or titanium were prepared on laboratory scale and subjected to a double-quenching and austempering heat treatment cycle. Slow strain rate tensile (SSRT) was tested on the investigated TAM steels with and without hydrogen charging to reveal their tensile behaviors and hydrogen induced embrittlement effects. Microstructure observations by scanning electron microscope (SEM) are composed of a principal annealed martensitic matrix and 11.0–13.0% volume fraction of retained austenite, depending on the type of microalloying addition in the different steels. SSRT results show that these TRIP-assisted annealed martensitic steels under air media conditions combine high tensile strength (>1000 MPa) and good ductility (~25%), while under hydrogen charging condition, both tensile strength and ductility decrease where tensile strength ranges between 680 and 760 MPa, down from 1000–1100 MPa, and ductility loss ratio is between 78.8% and 91.1%, along with a total elongation of less than 5%. Hydrogen charged into steel matrix leads to the appearance of cleavage fractures, implying the occurrence of hydrogen induced embrittlement effect in TAM steels. Thermal hydrogen desorption results show that there are double-peak hydrogen desorption temperature ranges for these microalloyed steels, where the first peak corresponds to a high-density dislocation trapping effect, and the second peak corresponds to a hydrogen trapping effect exerted by microalloying precipitates. Thermal desorption analysis (TDS) in combination with SSRT results demonstrate that microalloying precipitates act as irreversible traps to fix hydrogen and, thus, retard diffusive hydrogen motion towards defects, such as grain boundaries and dislocations in microstructure matrix, and eventually reduce the hydrogen induced embrittlement tendency.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2007
Author(s):  
Han Meng ◽  
Zhenjun Hong ◽  
Yu Li ◽  
Xiaoshuai Jia ◽  
Zhihua Yin

The mechanical properties of carbide-free bainitic steels used in sports equipment were investigated. The nanobainitic ferrite was introduced in bainitic steel to enhance the stability of blocky retained austenite (RA). The blocky RA formed in bainitic austempering process was coarse and led to poor mechanical properties. By introducing the nanobainitic ferrite into blocky RA, the yield strength was improved remarkably, which was increased from 706 to 1180 MPa. Furthermore, the total elongation was almost twice the value compared to the traditional bainitic treatment. The improved mechanical properties were attributed to the enhanced stability of blocky RA. Furthermore, the increased carbon content in RA derived from the carbon dissolved in bainitic ferrite and the carbon trapped in dislocation or Cottrell atmosphere.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1888
Author(s):  
Zigan Xu ◽  
Jiyao Li ◽  
Xiao Shen ◽  
Tarek Allam ◽  
Silvia Richter ◽  
...  

Developing medium-Mn steels (MMnS) demands a better understanding of the microstructure evolution during thermo-mechanical treatments (TMTs). This study demonstrates the relationship among processing, microstructure, and mechanical properties of a warm-rolled medium-Mn steel (MMnS) containing 1.5 wt. % Cu and 1.5 wt. % Ni. After short-time warm rolling (WR) in an intercritical temperature range, a significant quantity (40.6 vol.%) of austenite was reverted and retained after air cooling. The microstructure and tensile properties of the WR specimens were compared with two typical process routes, namely hot rolling+ cold rolling+ annealing+ tempering (CRAT) and warm rolling+ annealing+ tempering (WRAT). The WR specimen exhibited comparable tensile properties with the CRAT specimens (967 MPa yield strength, 1155 MPa tensile strength, 23% total elongation), with a remarkably shortened process route, which was derived from the dislocation accumulation and austenite reversion during rolling. The WR route stands out among the traditional CRAT and the extended WRAT routes for its excellent tensile properties and compact processing route.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6900
Author(s):  
Guolong Liu ◽  
Jingbao Liu ◽  
Jie Zhang ◽  
Minghe Zhang ◽  
Yunli Feng

The microstructure evolution and mechanical properties of medium carbon martensitic steel during the warm rolling and annealing process were studied by scanning electron microscope (SEM), electron back scattering diffraction (EBSD), and electronic universal testing machine. The results showed that the microstructure of ferrite matrix with mass dispersive cementite particles was obtained by decomposition of martensitic in medium-carbon martensitic steel after warm rolling. The grain size of ferrite was ~ 0.53 μm, the yield strength and tensile strength were 951 MPa and 968 MPa, respectively, and the total elongation rate was 11.5% after warm rolling at 600 °C. Additionally, after the next 4 h of annealing, the grain size of ferrite and particle size of cementite increased to ~1.35 μm and ~360 nm and the yield strength and tensile strength decreased to 600 MPa and 645 MPa, respectively, with a total elongation increases of 20.9%. The strength of the material increased with increasing strain rate in tension, and the yield-to-tensile strength ratio increased from 0.92 to 0.94 and maintained good plasticity.


2021 ◽  
Vol 59 (10) ◽  
pp. 695-703
Author(s):  
Hyo Ju Bae ◽  
Kwang Kyu Ko ◽  
Hyoung Seok Park ◽  
Jae Seok Jeong ◽  
Jung Gi Kim ◽  
...  

Previously reported low-Mn ferritic-based lightweight steels are potential candidates for industrial applications, however, they typically exhibit lower strength, with < 1 GPa and lower strength-ductility balance, than medium- and high-Mn austenitic lightweight steels. Herein, we introduce a low-temperature tempering-induced partitioning (LTP) treatment that avoids the strength-ductility dilemma of low-Mn ferriticbased steels. When the LTP process was performed at 330 oC for 665 s, the strength of typical ferritic base Fe-2.8Mn5.7Al0.3C (wt%) steel with heterogeneously sized metastable austenite grains embedded in a ferrite matrix, exceeded 1.1 GPa. Notably, the increased strength-ductility balance of the LTP-processed ferritic steel was comparable to that of the high-Mn based austenitic lightweight steel series. Using microscale to nearatomic scale characterization we found that the simultaneous improvement in strength and total elongation could be attributed to size-dependent dislocation movement, and controlled deformation-induced martensitic transformation.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5358
Author(s):  
Xingyang Tu ◽  
Yi Ren ◽  
Xianbo Shi ◽  
Changsheng Li ◽  
Wei Yan ◽  
...  

In this study the strain capacity and work-hardening behavior of bainite (B), bainite + polygonal ferrite (B + PF), and bainite + polygonal ferrite + pearlite (B + PF + P) microstructures are compared. The work hardening exponent (n), instantaneous work hardening value (ni), and differential Crussard-Jaoul (DC-J) analysis were used to analyze the deformation behavior. The best comprehensive mechanical properties were obtained by the introduction of the pearlite phase in B + PF dualphase with the tensile strength of 586 MPa and total elongation of 31.0%. The additional pearlite phase adjusted the strain distribution, which increased the initial work hardening exponent and then maintained the entire plastic deformation at a high level, thus delayed necking. The introduction of pearlite reduced the risk of micro-void initiation combined with the high frequency of high angle grain boundaries (HAGBs) in triple-phase steel, which led to a low crack propagation rate.


Sign in / Sign up

Export Citation Format

Share Document