Fixed steel structures

2022 ◽  
pp. 317-351
Author(s):  
Chris Googan
Keyword(s):  

The choice of cost-effective method of anticorrosive protection of steel structures is an urgent and time consuming task, considering the significant number of protection ways, differing from each other in the complex of technological, physical, chemical and economic characteristics. To reduce the complexity of solving this problem, the author proposes a computational tool that can be considered as a subsystem of computer-aided design and used at the stage of variant and detailed design of steel structures. As a criterion of the effectiveness of the anti-corrosion protection method, the cost of the protective coating during the service life is accepted. The analysis of existing methods of steel protection against corrosion is performed, the possibility of their use for the protection of the most common steel structures is established, as well as the estimated period of effective operation of the coating. The developed computational tool makes it possible to choose the best method of protection of steel structures against corrosion, taking into account the operating conditions of the protected structure and the possibility of using a protective coating.


2016 ◽  
Vol 12 (1) ◽  
pp. 28-35
Author(s):  
H.M. Nykyforchyn ◽  
◽  
V.A. Chervatyuk ◽  
V.I. Marukha ◽  
Z.V. Slobodyan ◽  
...  

2019 ◽  
Vol 85 (1(I)) ◽  
pp. 35-44
Author(s):  
S. G. Sandomirski

The main magnetic parameters sensitive to the structure of steels are the parameters of their saturation loop of magnetic hysteresis: the coercive force Hcs and remanent magnetization Mrs. The saturation magnetization or saturation intensity Mr is most sensitive to the phase composition of steels. The variety of steel grades and modes of technological treatment (e.g., heat treatment, mechanical load) determined the use of magnetic structurescopy and magnetic characteristics — the coercive force Hc, remanent magnetization Mr , and specific hysteresis losses Wh on the subloops of the magnetic hysteresis of steels — as control parameters in diagnostics of the stressed and structural states of steel structures and pipelines. It has been shown that changes in Hc, Mr , and Wh are more sensitive to structural stresses and structures of steels than the parameters of the saturation hysteresis loop of magnetic hysteresis (Hcs, Mrs, and Mrs). The formulas for calculating Hc, Mr and Wh are presented to be used for estimation of changes in the parameters upon heat treatment of steels. Features of the structural sensitivity of the subloop characteristics and expediency of their use for magnetic structural and phase analyzes are determined. Thus, the range of changes in Ìr attributed to the structural changes in steels upon gradual Hm decrease is many times wider compared to the range of possible changes in Mrs under the same conditions. Conditions (relations between the magnetic parameters) and recommendations regarding the choice of the field strength Hm are given which provide the justified use of Hc, Mr and Wh parameters in magnetic structurescopy


2016 ◽  
Vol 106 (14) ◽  
pp. 26-35
Author(s):  
Quanke SU ◽  
Hongbing XIE
Keyword(s):  

Author(s):  
Vitaly М. Goritsky ◽  
◽  
Georgy R. Shneyderov ◽  
Eugeny P. Studenov ◽  
Olga A. Zadubrovskaya ◽  
...  

Determination of causes of crack-like defects in the heavy plate steel 09Г2С is a crucial task, the solution of which is aimed at improving the mechanical safety of oil storage steel vertical tanks. In order to determine the causes for the formation of a group of crack-like defects oriented towards rolling, revealed during grinding and magnetic inspection of the tank wall surface near the vertical weld, the analysis of the chemical composition and testing of the mechanical properties of heavy plate steel were carried out, including the determination of the anisotropy of impact toughness in the temperature range from +20 to –75 °С, analysis of metal microstructure in the area of defect formation on transversal sections and rolled surface. Impact bending tests of 09Г2С heavy plate steel after controlled rolling in longitudinal and transverse directions showed no anisotropy of impact toughness, as well as high purity of steel as for sulfur and titanium, which at higher content causes impact toughness anisotropy. The revealed features of metal microstructure near the defects made it possible to conclude that the crack-like defects were formed during the rolling of gas bubbles at the stage of preparing semi-finished rolled products for finishing rolling. One of the possible methods to prevent such defects from getting into finished rolled products is the use of automated systems of visual inspection of rolled products in the manufacturing process.


2020 ◽  
pp. 20-24
Author(s):  
Altino Loureiro ◽  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document