Performance of thin-walled steel structures by longitudinally and transeversely profiled steel plates

Author(s):  
Takuji Kumano ◽  
Kunimoto Sugiura ◽  
Takashi Yamaguchi ◽  
Eiichi Watanabe ◽  
Yasuo Suzuki
Author(s):  
Philipp Andreazza ◽  
Andreas Gericke ◽  
Knuth-Michael Henkel

AbstractArc brazing with low-melting copper-based filler materials, which has long been established and standardized in the thin sheet sector, offers numerous advantages in the processing of predominantly electrolytically galvanized steel structures. In steel and shipbuilding, on the other hand, equipment parts made of thick steel sheets are hot-dip galvanized at low cost and with good corrosion-inhibiting properties. Quality welding of such constructions is not possible without special precautions such as removing the zinc layer and subsequent recoating. With regard to greater plate thicknesses, arc brazing was analyzed in these investigations as an alternative joining method with regard to its suitability for practical use. Within the scope of the investigations, CuSi3Mn, CuMn12Ni2, and four different aluminum bronzes were examined on different sheet surface conditions with regard to the geometrical and production parameters. This was carried out by build-up and connection brazing, executed as butt and cross joints. Quasi-static tensile tests and fatigue tests were used to assess the strength behavior. In addition, metallographic analyses are carried out as well as hardness tests. The suitability for multi-layer brazing and the tendency to distortion were also investigated, as well as the behavior of arc brazed joints under corrosive conditions.


2018 ◽  
Vol 140 ◽  
pp. 191-207 ◽  
Author(s):  
J.P. Martins ◽  
F. Ljubinkovic ◽  
L. Simões da Silva ◽  
H. Gervásio

2015 ◽  
Vol 74 (4) ◽  
Author(s):  
Yeong Huei Lee ◽  
Cher Siang Tan ◽  
Shahrin Mohammad ◽  
Yee Ling Lee

Connection is an important element in structural steelwork construction. Eurocode does not provide adequate design information for mechanical properties prediction of top-seat flange cleat connection, especially for thin-walled cold-formed steel structures. Adopting hot-rolled design with neglecting thin-walled behaviour could lead to unsafe or uneconomic design. This research aims to provide accurate mechanical properties prediction for bolted top-seat flange cleat connection in cold-formed steel structures. The scope of work focuses on the effect of various thickness of the flange cleat to the rotational stiffness and strength behaviour of a beam-to-column connection. Experimentally verified and validated finite element modelling technique is applied in the parametric investigation. Two categories of flange cleat thickness, ranged from 2 mm to 40 mm are studied. From the developed numerical models, it is observed that Eurocode has overestimated the initial rotational stiffness prediction, calculated with component method. The over-estimation would influence the overall stiffness of structures and force distribution within the components. As a conclusion, a set of newly proposed accurate predictions for initial rotational stiffness and strength of cold-formed steel top-seat flange cleat connection, with the influence of the thickness of flange cleat is presented.


2018 ◽  
Vol 245 ◽  
pp. 08007 ◽  
Author(s):  
Vladimir Rybakov ◽  
Stanislav Dyakov ◽  
Daniil Sovetnikov ◽  
Artur Azarov ◽  
Sergey Ivanov

The calculation of thin-walled rods is extremely relevant problem of structural mechanics and not only from the scientific standpoint, but also due to the widespread use of so-called lightweight thin-walled steel structures for construction engineering sector. Regardless of a sufficiently large number of studies connected with the statics of thin-walled rods, the dynamics of such systems have not been thoroughly studied yet. Based on one of the forward-looking theories of calculation i.e. the semi-shear theory by Slicker, the paper provides a technique for solving the dynamics problems of thin-walled rods. The stiffness and mass matrices of the finite element system are obtained for linear approximation of the form functions, and the natural vibration frequencies of the rods are calculated. The obtained solution is accomplished by the extrapolation method of estimating the accuracy of numerical methods for solving mathematical problems.


Sign in / Sign up

Export Citation Format

Share Document