Evaluation of low temperature performance of oil modified asphalt using the glass transition temperature

2021 ◽  
pp. 123-128
Author(s):  
J.Q. Xu ◽  
C. Xing ◽  
B. Hong ◽  
D.W. Wang* ◽  
Z.P. Fan ◽  
...  
Buildings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 408
Author(s):  
Tao Wang ◽  
Xuelei Wei ◽  
De Zhang ◽  
Hai Shi ◽  
Zhiqiang Cheng

Finding an alternative or supplementary test method to evaluating the low temperature performance of asphalt is an area of considerable interest. This paper tries to explore the possibility of using the dynamic shear rheometer (DSR) method for assessing the low temperature properties of styrenebutadienestyrene (SBS) modified asphalt. In the study, 60/80 and 80/100 pen grade asphalt binders, named binder A-70, binder B-70 and binder C-90, are used to produce the SBS modified asphalt samples. After that, the low temperature performance of the asphalt binders is characterized by using bending beam rheometer (BBR) test. The results indicate that the low temperature performance of the different binders is related to the source of the binder. The low temperature performance of asphalt could be improved with the addition of the SBS. The DSR test is used to develop the complex modulus master curves for binders. Based on the principle of time–temperature conversion, the glass transition temperature of asphalt is calculated by the Williams–Landel–Ferry (WLF) equation. The glass transition temperatures (Tg) of base asphalt and the SBS modified asphalt are determined by the viscoelastic parameters of the master curve and the WLF equation coefficients based on the time–temperature superposition principle. By establishing the relationship between the critical temperature and the Tg of the asphalt binder, the effectiveness of the method established in this paper is verified. The advantage of this method is the ability to use the DSR test for the rapid evaluation of the low temperature performance of asphalt, which is able to reduce testing materials and save testing time as well. The glass transition temperature of the SBS modified asphalt is closely associated with aging degree, asphalt source and the SBS content.


2013 ◽  
Vol 477-478 ◽  
pp. 1175-1178
Author(s):  
Ling Zou ◽  
Jing Wei Ne ◽  
Weng Gang Zhang

70# and 90# matrix asphalt mixture with MaR were studied through dynamic modulus test, rutting test, freeze-thaw splitting test, bending test to study the applicability of the Modifying agent of rubber plastic compound (MaR) in matrix asphalt mixture.Test results were Compared with SBSI-C modified asphalt mixture.The results indicate that: high-temperature stability of MaR+70# asphalt mixture is as well as SBSI-C modified asphalt mixture,and is bettere than MaR+90# asphalt mixture; water stability of MaR+90# asphalt mixture is bettere than SBSI-C modified asphalt mixture and MaR+70# asphalt mixture; low temperature performance of MaR+90# asphalt mixture is bettere than MaR+70# asphalt mixture, but is worse than modified asphalt mixture SBSI-C ; MaR+70# asphalt mixture can be first used in area of resisting high temperature and rutting, MaR+90# asphalt mixture can be used if the water stability performance and low temperature performance are considered.


Coatings ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1070
Author(s):  
Cheng Xu ◽  
Zhengqi Zhang ◽  
Feifei Liu

To improve the low-temperature performance of RET (Reactive Elastomeric Terpolymer) modified asphalt mixture (RETM), polyurethane prepolymer (PUP) was used by wet process, ground waste rubber (GWR) and fibers were used by dry process. Tests of force ductility, bending beam rheometer (BBR), differential scanning calorimeter (DSC), viscosity and multiple stress creep recovery (MSCR) were conducted to study the effects of PUP on the performance of RET modified asphalt (RETA), and beam bending test was conducted to study the effects of GWR and fibers on the performance of RETM. Then, tests of beam bending, wheel tracking, Marshall immersion, freeze-thaw splitting, and economic analysis were further conducted to compare the performance and economy of RETM modified with optimum modifiers suggested. All modifiers improve the low-temperature performance of RETM. PUP content, the content and size of GWR and the content and type of fibers significantly affect the performance of RETA or RETM respectively. After analysis, 10% PUP, 2.1% 80 mesh GWR and 0.2% polyester (PE) fiber are considered as the optimum modifiers, respectively. Comparison results show that optimum modifiers variously improve the low-temperature performance, rutting resistance and moisture susceptibility of RETM, but they slightly reduced the economy of RETM. Comprehensive evaluation shows that 2.1% 80 mesh GWR and 10% PUP are better than 0.2% PE fiber.


2016 ◽  
Vol 48 (8) ◽  
pp. 691-710
Author(s):  
Yong-Chan Chung ◽  
Hyeryoung Yoon ◽  
Jae Won Choi ◽  
Byoung Chul Chun

Citric acid (CA) was used as a grafted group onto polyurethane (PU) to form a CA-grafted PU series, with a control PU series containing free CA prepared for comparison. With an increase in the CA content, the enthalpy change during the melting increased for the PU and CPU series, and the glass transition temperature increased with the increase in CA content for the PU series but not for the CPU series. The tensile strengths of the PU series sharply increased with the CA content, whereas those of the CPU series did not. The PU series demonstrated better low-temperature flexibility and water permeability than the unmodified PU.


Sign in / Sign up

Export Citation Format

Share Document