Foundations for the Modeling and Simulation of Emergent Behavior Systems

2018 ◽  
pp. 217-258
Author(s):  
Thomas Holland
Author(s):  
Jason M. Aughenbaugh ◽  
Christiaan J. J. Paredis

To design today’s complex, multi-disciplinary systems, designers need a design method that allows them to systematically decompose a complex design problem into simpler sub-problems. Systems engineering provides such a framework. In an iterative, hierarchical fashion systems are decomposed into subsystems and requirements are allocated to these subsystems based on estimates of their attributes. In this paper, we investigate the role and limitations of modeling and simulation in this process of system decomposition and requirements flowdown. We first identify different levels of complexity in the estimation of system attributes, ranging from simple aggregation to complex emergent behavior. We also identify the main obstacles to the systems engineering decomposition approach: identifying coupling at the appropriate level of abstraction and characterizing and processing uncertainty. The main contributions of this paper are to identify these short-comings, present the role of modeling and simulation in overcoming these shortcomings, and discuss research directions for addressing these issues and expanding the role of modeling and simulation in the future.


2013 ◽  
Vol 1 (1) ◽  
Author(s):  
Soufiane Bouarfa ◽  
Henk AP Blom ◽  
Richard Curran ◽  
Mariken HC Everdij

Author(s):  
Marcia R. Friesen ◽  
Richard Gordon ◽  
Robert D. McLeod

In this chapter, the authors examine manifestations of emergence or apparent emergence in agent based social modeling and simulation, and discuss the inherent challenges in building real world models and in defining, recognizing and validating emergence within these systems. The discussion is grounded in examples of research on emergence by others, with extensions from within our research group. The works cited and built upon are explicitly chosen as representative samples of agent-based models that involve social systems, where observation of emergent behavior is a sought-after outcome. The concept of the distinctiveness of social from abiotic emergence in terms of the use of global parameters by agents is introduced.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Sonja Kolen ◽  
Stefan Dähling ◽  
Timo Isermann ◽  
Antonello Monti

In future electrical distribution systems, component heterogeneity and their cyber-physical interactions through electrical lines and communication lead to emergent system behavior. As the distribution systems represent the largest part of an energy system with respect to the number of nodes and components, large-scale studies of their emergent behavior are vital for the development of decentralized control strategies. This paper presents and evaluates DistAIX, a novel agent-based modeling and simulation tool to conduct such studies. The major novelty is a parallelization of the entire model—including the power system, communication system, control, and all interactions—using processes instead of threads. Thereby, a distribution of the simulation to multiple computing nodes with a distributed memory architecture becomes possible. This makes DistAIX scalable and allows the inclusion of as many processing units in the simulation as desired. The scalability of DistAIX is demonstrated by simulations of large-scale scenarios. Additionally, the capability of observing emergent behavior is demonstrated for an exemplary distribution grid with a large number of interacting components.


Sign in / Sign up

Export Citation Format

Share Document