DEM simulation of granular materials under direct shearing considering rolling resistance

Author(s):  
Jin-kun He
2012 ◽  
Vol 170-173 ◽  
pp. 3361-3366
Author(s):  
Zhao Xia Tong ◽  
Min Zhou ◽  
Yang Ping Yao

Series of biaxial compression simulations are carried out to investigate the effects of boundary condition on the deformation of granular materials by using DEM. The parameters used in DEM are validated by the biaxial compression experiments on elliptical steel bars. The effects of boundary condition on the stress-strain relationship are analyzed. And special focus are put in the analysis of particle displacement, particle rotation, void distribution, particle long axis orientation and contact force with the development of deformation.


2021 ◽  
Vol 118 (38) ◽  
pp. e2107965118
Author(s):  
Filip Elekes ◽  
Eric J. R. Parteli

The angle of repose—i.e., the angle θr between the sloping side of a heap of particles and the horizontal—provides one of the most important observables characterizing the packing and flowability of a granular material. However, this angle is determined by still poorly understood particle-scale processes, as the interactions between particles in the heap cause resistance to roll and slide under the action of gravity. A theoretical expression that predicts θr as a function of particle size and gravity would have impact in the engineering, environmental, and planetary sciences. Here we present such an expression, which we have derived from particle-based numerical simulations that account for both sliding and rolling resistance, as well as for nonbonded attractive particle–particle interactions (van der Waals). Our expression is simple and reproduces the angle of repose of experimental conical heaps as a function of particle size, as well as θr obtained from our simulations with gravity from 0.06 to 100 times that of Earth. Furthermore, we find that heaps undergo a transition from conical to irregular shape when the cohesive to gravitational force ratio exceeds a critical value, thus providing a proxy for particle-scale interactions from heap morphology.


2021 ◽  
Author(s):  
Jiangtao Lei ◽  
◽  
Marcos Arroyo ◽  
Matteo Ciantia ◽  
Ningning Zhang ◽  
...  

A recently proposed DEM model for materials with rough crushable grains (Zhang et al. 2021; Ciantia et al. 2015; Otsubo et al. 2017) is here employed to examine the effect of contact roughness on the critical state line, a property of granular materials which is a) fundamental for the evaluation of liquefaction risk and liquefied responses and b) easily accessible through DEM simulation (Ciantia et al. 2019).


2013 ◽  
Author(s):  
Nan Gui ◽  
Wenkai Xu ◽  
Liang Ge

2019 ◽  
Vol 56 (4) ◽  
pp. 211-217 ◽  
Author(s):  
Murino Kobayakawa ◽  
Shinichiro Miyai ◽  
Takuya Tsuji ◽  
Toshitsugu Tanaka

Author(s):  
Chuanfeng Fang ◽  
Jian Gong ◽  
Mingtao Jia ◽  
Zhihong Nie ◽  
Bo Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document