stress rotation
Recently Published Documents


TOTAL DOCUMENTS

182
(FIVE YEARS 62)

H-INDEX

23
(FIVE YEARS 6)

2021 ◽  
pp. 1-7
Author(s):  
Narottam Maity ◽  
◽  
S P Barik Barik ◽  
P K Chaudhuri ◽  
◽  
...  

The aim of the present article is to analyze the propagation of Rayleigh waves in a rotating fiber-reinforced electrically conducting elastic solid medium under the influence of surface stress, magnetic field and gravity. The magnetic field is applied in such a direction that the problem can be considered as a two dimensional one. The wave velocity equation for Rayleigh waves has been obtained. In the absence of gravity field, surface stress, rotation and fiberreinforcement, the frequency equation is in complete agreement with the corresponding classical results. The effects on various subjects of interest are discussed and shown graphically. Comparisons are made with the corresponding results in absence of surface stress


Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 47
Author(s):  
De Zhang ◽  
Zhiqiang Cheng ◽  
Dajiang Geng ◽  
Shengjia Xie ◽  
Tao Wang

Compaction is a critical step in asphalt pavement construction. The objective of this study is to analyze the mesoscale mechanical behaviors of coarse aggregates in asphalt mixtures during gyratory compaction through experiments and numerical simulation using the Discrete Element Method (DEM). A novel granular sensor (SmartRock) was embedded in an asphalt mixture specimen to collect compaction response data, including acceleration, stress, rotation angle and temperature. Moreover, the irregularly shaped coarse aggregates were regenerated in the DEM model, and numerical simulations were conducted to analyze the evolution of aggregate interaction characteristics. The findings are as follows: (1) the measured contact stress between particles changes periodically during gyratory compaction, and the amplitude of stress tends to be stable with the increase of compaction cycles; (2) the contact stress of particles is influenced by the shape of aggregates: flat-shaped particles are subjected to greater stress than angular, fractured or elongated particles; (3) the proportion of strong contacts among particles is high in the initial gyratory compaction stage, then decreases as the number of gyratory compactions grows, the contacts among particles tending to homogenize; (4) during initial gyratory compactions, the normal contact forces form a vertical distribution due to the aggregates’ gravity accumulation. The isotropic distribution of contact forces increases locally in the loading direction along the axis with a calibrated internal angle orientation (1.25°) in the earlier cyclic loading stage, then the local strong contacts decrease in the later stage, while the strength of the force chains in other directions increase. The anisotropy of aggregate contact force networks tends to weaken. In other words, kneading and shearing action during gyratory compaction have a positive impact on the homogenization and isotropy of asphalt mixture contact forces.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Bin-Long Zhang ◽  
Da-Yan Wang ◽  
Zhi-Wei Zhou ◽  
Wei Ma ◽  
Le-Le Lei

The foundation soil is always subjected to complex stress, including continuous rotation of the principal stress caused by traffic and earthquake loads. To comprehend the dynamic characteristics of frozen clay under complex stress sate, including continuous rotation of the principal stress, this study investigates the effect of temperature on the dynamic characteristics of frozen clay under principal stress rotation using a frozen hollow cylinder apparatus (FHCA-300). The test results reveal that the cumulative plastic strain of frozen clay samples exponentially increases with the rising of temperature under principal stress rotation. The influence of temperature is more profound with a high cyclic stress ratio (CSR). A decrease in temperature can improve the stiffness of the frozen clay, reduces its energy dissipation, and enhances its ability to resist dynamic loading. However, the principal stress rotation phenomenon may aggravate the damage of frozen clay and increase the energy dissipation and reduces its ability to resist dynamic loading. Based on the experimental data, an empirical expression was proposed to describe the coupling influence of CSRs and temperature on the axial resilient modulus of frozen clay, which can predict the development of axial resilient modulus under different thermal-mechanical conditions.


2021 ◽  
pp. 229190
Author(s):  
Kun Long ◽  
Zhenyu Zhang ◽  
Shaohua Li ◽  
Ke Li ◽  
Yong Luo

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Hengli Wang ◽  
Zhengsheng Zou ◽  
Jian Liu ◽  
Xinyu Wang

When considering the friction and bonding force between the back of the retaining wall and the horizontal fill behind the wall, the principal stress of the soil element near the vertical back of the retaining wall is no longer vertical and horizontal but deflects to a certain extent. When the surface of the backfill becomes inclined, the principal stress of the soil behind the wall deflects in a more complicated way. In this paper, the cohesion of the soil element in the fill with an inclined surface is assumed, and the formulas for calculating the active and passive earth pressures of the retaining wall with inclined cohesive backfill are derived by rotating the principal stress of the soil element behind the wall. The proposed method is compared with the existing algorithm, and the influences of the inclination and the cohesion of the fill are analyzed. The results show that the proposed method is more universal. Both the active and passive earth pressures increase rapidly with the increase of the inclination of the fill. The active earth pressure and its horizontal component decrease with the increase of the cohesion of the fill, while the passive earth pressure and its horizontal component increase with the increase of the cohesion of the fill.


2021 ◽  
Vol 11 (20) ◽  
pp. 9458
Author(s):  
Lan Cui ◽  
Qian Sheng ◽  
Zhenzhen Niu ◽  
Liuming Chang

An experimental study aimed at providing insights into the cyclic deformation behavior of saturated marine silt under principal rotation, as induced by wave loading, is presented. Using the GDS hollow cylinder apparatus, a series of undrained tests are performed and the specimens at identical initial states are subjected to combined axial–torsional cyclic loading that imposes different levels of stress rotation. The cumulative generalized shear strain γg is used to describe the deformation of the silt under complex stress paths. The test results show that the cumulative generalized shear strain is significantly dependent on the cyclic stress ratio (CSR) and cyclic loading amplitude ratio δ. The cumulative generalized shear strain increases with the increase in CSR and decreases with the increase in δ. The development trend of γg can be well predicted through the correct Monismith model in the non-liquefaction silt, with a low error that is generally less than 10%.


2021 ◽  
Vol 11 (19) ◽  
pp. 8987
Author(s):  
Zunan Fu ◽  
Guoshuai Wang ◽  
Wenbo Song ◽  
Yanming Yu ◽  
Pengfei Wei ◽  
...  

Under long-term traffic loading, the soil elements in subgrade are subjected to continuous principal stress rotation. In order to study the deformation properties of soft clays under traffic loading with principal stress rotation, a series of cyclic torsional shear tests were conducted on Wenzhou soft clays under different torsional cyclic stress ratios and degrees of principal stress rotation. The test results showed the stiffness softening of soil under long-term traffic loading. In addition, the principal stress rotation induced by traffic loading aggravated the deformation of clay samples and pore pressure accumulation. A modified dynamic pore pressure model was applied to consider the effect of principal stress rotation on undrained cumulative pore pressure, predicting the growth of cumulative pore pressure at different cycles. Considering loading cycles and the principal stress rotation, a modified Hardin–Drnevich (H-D) backbone curve model under traffic loading with principal stress rotation was proposed, and the predictive values of this model agreed well with the experimental values. Compared with the traditional H–D model, this model better reflects the cyclic deformation of soft clays under long-term traffic loading with principal stress rotation.


Sign in / Sign up

Export Citation Format

Share Document