6 Dihydroxyacetone Phosphate-Dependent Aldolases: From Flask Reaction to Cell-Based Synthesis

2019 ◽  
Vol 20 (4) ◽  
pp. 304-315 ◽  
Author(s):  
Mónica Rodríguez-Bolaños ◽  
Ruy Perez-Montfort

Triosephosphate isomerase is the fifth enzyme in glycolysis and its canonical function is the reversible isomerization of glyceraldehyde-3-phosphate and dihydroxyacetone phosphate. Within the last decade multiple other functions, that may not necessarily always involve catalysis, have been described. These include variations in the degree of its expression in many types of cancer and participation in the regulation of the cell cycle. Triosephosphate isomerase may function as an auto-antigen and in the evasion of the immune response, as a factor of virulence of some organisms, and also as an important allergen, mainly in a variety of seafoods. It is an important factor to consider in the cryopreservation of semen and seems to play a major role in some aspects of the development of Alzheimer's disease. It also seems to be responsible for neurodegenerative alterations in a few cases of human triosephosphate isomerase deficiency. Thus, triosephosphate isomerase is an excellent example of a moonlighting protein.


Metabolites ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 346
Author(s):  
Adrian Benito ◽  
Nabil Hajji ◽  
Kevin O’Neill ◽  
Hector C. Keun ◽  
Nelofer Syed

Metabolic regulation of immune cells has arisen as a critical set of processes required for appropriate response to immunological signals. While our knowledge in this area has rapidly expanded in leukocytes, much less is known about the metabolic regulation of brain-resident microglia. In particular, the role of alternative nutrients to glucose remains poorly understood. Here, we use stable-isotope (13C) tracing strategies and metabolomics to characterize the oxidative metabolism of β-hydroxybutyrate (BHB) in human (HMC3) and murine (BV2) microglia cells and the interplay with glucose in resting and LPS-activated BV2 cells. We found that BHB is imported and oxidised in the TCA cycle in both cell lines with a subsequent increase in the cytosolic NADH:NAD+ ratio. In BV2 cells, stimulation with LPS upregulated the glycolytic flux, increased the cytosolic NADH:NAD+ ratio and promoted the accumulation of the glycolytic intermediate dihydroxyacetone phosphate (DHAP). The addition of BHB enhanced LPS-induced accumulation of DHAP and promoted glucose-derived lactate export. BHB also synergistically increased LPS-induced accumulation of succinate and other key immunometabolites, such as α-ketoglutarate and fumarate generated by the TCA cycle. Finally, BHB upregulated the expression of a key pro-inflammatory (M1 polarisation) marker gene, NOS2, in BV2 cells activated with LPS. In conclusion, we identify BHB as a potentially immunomodulatory metabolic substrate for microglia that promotes metabolic reprogramming during pro-inflammatory response.


1995 ◽  
Vol 60 (13) ◽  
pp. 4294-4295 ◽  
Author(s):  
Ramon Alajarin ◽  
Eduardo Garcia-Junceda ◽  
Chi-Huey Wong

1997 ◽  
Vol 62 (17) ◽  
pp. 5920-5922 ◽  
Author(s):  
Thierry Gefflaut ◽  
Marielle Lemaire ◽  
Marie-Lise Valentin ◽  
Jean Bolte

Sign in / Sign up

Export Citation Format

Share Document