o2 evolution
Recently Published Documents


TOTAL DOCUMENTS

347
(FIVE YEARS 52)

H-INDEX

53
(FIVE YEARS 7)

ACS Catalysis ◽  
2022 ◽  
pp. 1403-1414
Author(s):  
Mirabbos Hojamberdiev ◽  
Ronald Vargas ◽  
Zukhra C. Kadirova ◽  
Kosaku Kato ◽  
Hadi Sena ◽  
...  

2021 ◽  
Author(s):  
Alexandr V. Shitov ◽  
Vasily V. Terentyev ◽  
Govindjee Govindjee

Carbonic anhydrase (CA) activity, associated with Photosystem II (PSII) from Pisum sativum, has been shown to enhance water oxidation. But, the nature of the CA activity, its origin and role in photochemistry has been under debate, since the rates of CA reactions, measured earlier, were less than the rates of photochemical reactions. Here, we demonstrate high CA activity in PSII from Pisum sativum, measured by HCO3- dehydration at pH 6.5 (i.e. under optimal condition for PSII photochemistry), with kinetic parameters Km of 2.7 mM; Vmax of 2.74·10-2 mM·sec-1; kcat of 1.16·103 sec-1 and kcat/Km of 4.1·105 M-1 sec-1, showing the enzymatic nature of this activity, which kcat exceeds by ~13 times the rate of PSII, as measured by O2 evolution. The similar dependence of HCO3- dehydration, of the maximal quantum yield of photochemical reactions and of O2 evolution on the ratio of chlorophyll/photochemical reaction center II demonstrate the interconnection of these processes on the electron donor side of PSII. Since the removal of protons is critical for fast water oxidation, and since HCO3- dehydration consumes a proton, we suggest that CA activity, catalyzing very fast removal of protons, supports efficient water oxidation in PSII and, thus, photosynthesis in general.


Reactions ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 301-311
Author(s):  
Mordechai L. Kremer

The origin of an upper limit to the amount of O2 evolved in the rapid reaction between Fe2+ and H2O2 was investigated at a high concentration of H2O2. Using a nonradical model, including the formation of a primary Fe2+–biperoxy complex with a diminished rate of formation of the active intermediate FeO2+, agreement has been reached for the first time with the experimental data obtained by Barb et al. A limited formation of O2 requires that a finite concentration of H2O2 should be present in the reaction mixture when [Fe2+] falls to zero. It has been shown that in Barb et al.’s model the condition for such a state ([Fe2+] = 0, [H2O2] > 0) does not exist. Free radical based models fail as mechanisms for the Fenton reaction.


2021 ◽  
Vol 558 ◽  
pp. 149882
Author(s):  
Shan Jiang ◽  
Jing Cao ◽  
Minna Guo ◽  
Dongdong Cao ◽  
Xuemei Jia ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2042
Author(s):  
Joaquín Soriano-López ◽  
Rory Elliott ◽  
Amal C. Kathalikkattil ◽  
Ayuk M. Ako ◽  
Wolfgang Schmitt

The water oxidation half-reaction is considered the bottleneck in the development of technological advances to replace fossil fuels with sustainable and economically affordable energy sources. In natural photosynthesis, water oxidation occurs in the oxygen evolving complex (OEC), a manganese-oxo cluster {Mn4CaO5} with a cubane-like topology that is embedded within a redox-active protein environment located in photosystem II (PS II). Therefore, the preparation of biomimetic manganese-based compounds is appealing for the development of efficient and inexpensive water oxidation catalysts. Here, we present the water oxidation catalytic activity of a high-nuclearity mixed-metal manganese-strontium cluster, [MnIII12MnII6Sr(μ4-O8)(μ3-Cl)8(HLMe)12(MeCN)6]Cl2∙15MeOH (Mn18Sr) (HLMe = 2,6-bis(hydroxymethyl)-p-cresol), in neutral media. This biomimetic mixed-valence cluster features different cubane-like motifs and it is stabilized by redox-active, quinone-like organic ligands. The complex displays a low onset overpotential of 192 mV and overpotentials of 284 and 550 mV at current densities of 1 mA cm−2 and 10 mA cm−2, respectively. Direct O2 evolution measurements under visible light-driven water oxidation conditions demonstrate the catalytic capabilities of this cluster, which exhibits a turnover frequency of 0.48 s−1 and a turnover number of 21.6. This result allows for a direct comparison to be made with the structurally analogous Mn-oxo cluster [MnIII12MnII7(µ4-O)8(µ3-OCH3)2(µ3-Br)6(HLMe)12(MeOH)5(MeCN)]Br2·9MeCN·MeOH (Mn19), the water oxidation catalytic activity of which was recently reported by us. This work highlights the potential of this series of compounds towards the water oxidation reaction and their amenability to induce structural changes that modify their reactivity.


Sign in / Sign up

Export Citation Format

Share Document