Multi-sensor attitude algorithm design for a low-cost strap-down system based on the direction cosine matrix

Robotica ◽  
2014 ◽  
Vol 34 (5) ◽  
pp. 995-1009 ◽  
Author(s):  
Chiemela Onunka ◽  
Glen Bright ◽  
Riaan Stopforth

SUMMARYPositioning and navigation data for unmanned surface vehicles (USVs) are extracted using the Global Positioning System (GPS) and the Inertial Navigation System (INS) integrated with an inertial measurement unit (IMU). The integration of quaternion with direction cosine matrix (DCM) with the aim of obtaining high accuracy with complete system independence has been effectively used to supply position and attitude information for autonomous navigation of marine crafts. A DCM integrated with a quaternion provided an advanced technique for precise USV attitude estimation and position determination using low-cost sensors. This paper presents the implementation of an INS developed by the integration of DCM and quaternion.


2016 ◽  
Vol 70 (1) ◽  
pp. 165-183 ◽  
Author(s):  
Jun Mao ◽  
Junxiang Lian ◽  
Xiaoping Hu

This paper presents a framework for a strapdown Inertial Navigation System (INS) algorithm design by using Lie group and Lie algebra. The general way to solve Lie group differential equations is introduced. Investigations reveal that this general Lie group method provides a simpler unified way to solve differential equations involving direction cosine matrix, quaternion and dual quaternion, which are widely used in INS algorithm design. Furthermore, we also present a new INS algorithm based on the Special Euclidean group se(3) under the guidelines of Lie group method. Analyses show that se(3) algorithm has the same accuracy as a dual quaternion algorithm, this is also justified by numerical simulations. Though the se(3) algorithm has no improvements in accuracy, the general Lie group method used in the design process shows its brevity and uniformity.


2015 ◽  
Vol 2015 ◽  
pp. 1-18 ◽  
Author(s):  
Heikki Hyyti ◽  
Arto Visala

An attitude estimation algorithm is developed using an adaptive extended Kalman filter for low-cost microelectromechanical-system (MEMS) triaxial accelerometers and gyroscopes, that is, inertial measurement units (IMUs). Although these MEMS sensors are relatively cheap, they give more inaccurate measurements than conventional high-quality gyroscopes and accelerometers. To be able to use these low-cost MEMS sensors with precision in all situations, a novel attitude estimation algorithm is proposed for fusing triaxial gyroscope and accelerometer measurements. An extended Kalman filter is implemented to estimate attitude in direction cosine matrix (DCM) formation and to calibrate gyroscope biases online. We use a variable measurement covariance for acceleration measurements to ensure robustness against temporary nongravitational accelerations, which usually induce errors when estimating attitude with ordinary algorithms. The proposed algorithm enables accurate gyroscope online calibration by using only a triaxial gyroscope and accelerometer. It outperforms comparable state-of-the-art algorithms in those cases when there are either biases in the gyroscope measurements or large temporary nongravitational accelerations present. A low-cost, temperature-based calibration method is also discussed for initially calibrating gyroscope and acceleration sensors. An open source implementation of the algorithm is also available.


2021 ◽  
pp. 1-19
Author(s):  
Habib Ghanbarpourasl

Abstract This paper introduces a power series based method for attitude reconstruction from triad orthogonal strap-down gyros. The method is implemented and validated using quaternions and direction cosine matrix in single and double precision implementation forms. It is supposed that data from gyros are sampled with high frequency and a fitted polynomial is used for an analytical description of the angular velocity vector. The method is compared with the well-known Taylor series approach, and the stability of the coefficients’ norm in higher-order terms for both methods is analysed. It is shown that the norm of quaternions’ derivatives in the Taylor series is bigger than the equivalent terms coefficients in the power series. In the proposed method, more terms can be used in the power series before the saturation of the coefficients and the error of the proposed method is less than that for other methods. The numerical results show that the application of the proposed method with quaternions performs better than other methods. The method is robust with respect to the noise of the sensors and has a low computational load compared with other methods.


Sign in / Sign up

Export Citation Format

Share Document