Attitude reconstruction from strap-down rate gyros using power series

2021 ◽  
pp. 1-19
Author(s):  
Habib Ghanbarpourasl

Abstract This paper introduces a power series based method for attitude reconstruction from triad orthogonal strap-down gyros. The method is implemented and validated using quaternions and direction cosine matrix in single and double precision implementation forms. It is supposed that data from gyros are sampled with high frequency and a fitted polynomial is used for an analytical description of the angular velocity vector. The method is compared with the well-known Taylor series approach, and the stability of the coefficients’ norm in higher-order terms for both methods is analysed. It is shown that the norm of quaternions’ derivatives in the Taylor series is bigger than the equivalent terms coefficients in the power series. In the proposed method, more terms can be used in the power series before the saturation of the coefficients and the error of the proposed method is less than that for other methods. The numerical results show that the application of the proposed method with quaternions performs better than other methods. The method is robust with respect to the noise of the sensors and has a low computational load compared with other methods.

2018 ◽  
Vol 14 (5) ◽  
pp. 923-939 ◽  
Author(s):  
Neeraj Dhiman ◽  
Mohammad Tamsir

Purpose The purpose of this paper is to present a modified form of trigonometric cubic B-spline (TCB) collocation method to solve nonlinear Fisher’s type equations. Taylor series expansion is used to linearize the nonlinear part of the problem. Five examples are taken for analysis. The obtained results are better than those obtained by some numerical methods as well as exact solutions. It is noted that the modified form of TCB collocation method is an economical and efficient technique to approximate the solution PDEs. The authors also carried out the stability analysis which proves that the method is unconditionally stable. Design/methodology/approach The authors present a modified form of TCB collocation method to solve nonlinear Fisher’s type equations. Taylor series expansion is used to linearize the nonlinear part of the problem. The authors also carried out the stability analysis. Findings The authors found that the proposed method results are better than those obtained by some numerical methods as well as exact solutions. It is noted that the modified form of TCB collocation method is an economical and efficient technique to approximate the solution PDEs. Originality/value The authors propose a new method, namely, modified form of TCB collocation method. In the authors’ best knowledge, aforesaid method is not proposed by any other author. The authors used this method to solve nonlinear Fisher’s type equations and obtained more accurate results than the results obtained by other methods.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2908
Author(s):  
Kazuo Umemura ◽  
Ryo Hamano ◽  
Hiroaki Komatsu ◽  
Takashi Ikuno ◽  
Eko Siswoyo

Solubilization of carbon nanotubes (CNTs) is a fundamental technique for the use of CNTs and their conjugates as nanodevices and nanobiodevices. In this work, we demonstrate the preparation of CNT suspensions with “green” detergents made from coconuts and bamboo as fundamental research in CNT nanotechnology. Single-walled CNTs (SWNTs) with a few carboxylic acid groups (3–5%) and pristine multi-walled CNTs (MWNTs) were mixed in each detergent solution and sonicated with a bath-type sonicator. The prepared suspensions were characterized using absorbance spectroscopy, scanning electron microscopy, and Raman spectroscopy. Among the eight combinations of CNTs and detergents (two types of CNTs and four detergents, including sodium dodecyl sulfate (SDS) as the standard), SWNTs/MWNTs were well dispersed in all combinations except the combination of the MWNTs and the bamboo detergent. The stability of the suspensions prepared with coconut detergents was better than that prepared with SDS. Because the efficiency of the bamboo detergents against the MWNTs differed significantly from that against the SWNTs, the natural detergent might be useful for separating CNTs. Our results revealed that the use of the “green” detergents had the advantage of dispersing CNTs as well as SDS.


2021 ◽  
Vol 40 (2) ◽  
pp. 59-64
Author(s):  
Jan Verschelde

Hardware double precision is often insufficient to solve large scientific problems accurately. Computing in higher precision defined by software causes significant computational overhead. The application of parallel algorithms compensates for this overhead. Newton's method to develop power series expansions of algebraic space curves is the use case for this application.


Information ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 278
Author(s):  
Sanlong Jiang ◽  
Shaobo Li ◽  
Qiang Bai ◽  
Jing Yang ◽  
Yanming Miao ◽  
...  

A reasonable grasping strategy is a prerequisite for the successful grasping of a target, and it is also a basic condition for the wide application of robots. Presently, mainstream grippers on the market are divided into two-finger grippers and three-finger grippers. According to human grasping experience, the stability of three-finger grippers is much better than that of two-finger grippers. Therefore, this paper’s focus is on the three-finger grasping strategy generation method based on the DeepLab V3+ algorithm. DeepLab V3+ uses the atrous convolution kernel and the atrous spatial pyramid pooling (ASPP) architecture based on atrous convolution. The atrous convolution kernel can adjust the field-of-view of the filter layer by changing the convolution rate. In addition, ASPP can effectively capture multi-scale information, based on the parallel connection of multiple convolution rates of atrous convolutional layers, so that the model performs better on multi-scale objects. The article innovatively uses the DeepLab V3+ algorithm to generate the grasp strategy of a target and optimizes the atrous convolution parameter values of ASPP. This study used the Cornell Grasp dataset to train and verify the model. At the same time, a smaller and more complex dataset of 60 was produced according to the actual situation. Upon testing, good experimental results were obtained.


Author(s):  
Chuncheng Yang ◽  
Zhong Liu ◽  
Xiangyu Pei ◽  
Cuiling Jin ◽  
Mengchun Yu ◽  
...  

Magnetorheological fluids (MRFs) based on amorphous Fe-Si-B alloy magnetic particles were prepared. The influence of annealing treatment on stability and rheological property of MRFs was investigated. The saturation magnetization ( Ms) of amorphous Fe-Si-B particles after annealing at 550°C is 131.5 emu/g, which is higher than that of amorphous Fe-Si-B particles without annealing. Moreover, the stability of MRF with annealed amorphous Fe-Si-B particles is better than that of MRF without annealed amorphous Fe-Si-B particles. Stearic acid at 3 wt% was added to the MRF2 to enhance the fluid stability to greater than 90%. In addition, the rheological properties demonstrate that the prepared amorphous particle MRF shows relatively strong magnetic responsiveness, especially when the magnetic field strength reaches 365 kA/m. As the magnetic field intensified, the yield stress increased dramatically and followed the Herschel-Bulkley model.


2010 ◽  
Vol 163-167 ◽  
pp. 3297-3300 ◽  
Author(s):  
Jia Wei Shi ◽  
Hong Zhu ◽  
Zhi Shen Wu ◽  
Gang Wu

Coupon tests were conducted to investigate the mechanical characteristics of basalt FRP (BFRP) sheet, basalt-carbon hybrid FRP sheets and the corresponding epoxy rein under the effect of freeze-thaw cycling. FRP sheets and epoxy rein coupons were subjected to up to 200 and 250 freeze-thaw cycles respectively. Test parameters included the number of freeze-thaw cycles and the types of FRP composites. Test results show that (1) BFRP sheet perform better than CFRP or GFRP sheets under high freeze-thaw cycles; (2) exposed hybrid FRP sheets not only show very little loss in mechanical properties, but also contribute to the stability of test data; (3) mechanical properties of rein epoxy decrease significantly with increasing freeze-thaw cycles.


Sign in / Sign up

Export Citation Format

Share Document