Energy dissipation in hydraulic jumps on horizontal rough beds

2016 ◽  
Author(s):  
M Palermo ◽  
S Pagliara
2019 ◽  
Vol 71 (2) ◽  
pp. 105-111
Author(s):  
Arpan Arunrao Deshmukh ◽  
Naveen Sudharsan ◽  
Avinash D Vasudeo ◽  
Aniruddha Dattatraya Ghare

Hydraulic jump is an important phenomenon in open channel flows such as rivers and spillways. Hydraulic jump is mainly used for kinetic energy dissipation at the downstream side of a spillway with the assist of baffle blocks. It has been demonstrated that corrugated or rough beds show considerably more energy dissipation than smooth beds. The experimental research evaluating the effect of crushed stones on the hydraulic jump is presented in this paper. Five different-size sets of crushed stones were used. Results show that the effect of rough bed does not increase after a certain height of crushed stone is reached.


2007 ◽  
Vol 133 (9) ◽  
pp. 989-999 ◽  
Author(s):  
Francesco Giuseppe Carollo ◽  
Vito Ferro ◽  
Vincenzo Pampalone
Keyword(s):  

2018 ◽  
Vol 19 (4) ◽  
pp. 1110-1119
Author(s):  
Seyed Mahdi Saghebian

Abstract Channels with different shapes and bed conditions are used as useful appurtenances to dissipate the extra energy of a hydraulic jump. Accurate prediction of hydraulic jump energy dissipation is important in design of hydraulic structures. In the current study, hydraulic jump energy dissipation was assessed in channels with different shapes and bed conditions (i.e. smooth and rough beds) using the support vector machine (SVM) as an intelligence approach. Five series of experimental datasets were applied to develop the models. The results showed that the SVM model is successful in estimating the relative energy dissipation. For the smooth bed, it was observed that the sloping channel models with steps performed more successfully than rectangular and trapezoidal channels and the step height is an effective variable in the estimation process. For the rough bed, the trapezoidal channel models were more accurate than the rectangular channel. It was found that rough element geometry is effective in estimation of the energy dissipation. The result showed that the models of rough channels led to better predictions. The sensitivity analysis results revealed that Froude number had the more dominant role in the modeling. Comparison among SVM and two other intelligence approaches showed that SVM is more successful in the prediction process.


Author(s):  
N.G.P.B. Neluwala ◽  
K.T.S. Karunanayake ◽  
K.B.G.M. Sandaruwan ◽  
K.P.P. Pathirana

Sign in / Sign up

Export Citation Format

Share Document