Random vibrations

2020 ◽  
pp. 207-254
Author(s):  
Paolo Luciano Gatti
Keyword(s):  
1967 ◽  
Vol 89 (4) ◽  
pp. 626-632 ◽  
Author(s):  
Eric E. Ungar

The “statistical energy analysis” approach provides a relatively simple means for understanding and estimating the significant properties of multimodal random vibrations of complex systems, since this approach permits one to treat complex vibration problems in terms of much simpler energy balances. This paper delineates the concepts and relations which form the basis for the statistical energy approach, indicates its range of validity, and illustrates some of its applications.


Author(s):  
William T. Thomson
Keyword(s):  

2018 ◽  
Vol 64 (6) ◽  
pp. 642
Author(s):  
Mauricio Bastida Romero ◽  
Sebastian Ramirez Cholula

We study the performance of an electromechanical oscillator as an energy harvester driven byfinite-bandwidth random vibrations under the influence of both a stiffness-type nonlinearity and anonlinear damping that has recently been found to be relevant in the dynamics of submicrometermechanical resonators. The device was numerically simulated and its performance assessed by meansof the net electrical power and the efficiency of the conversion of the supplied power by the noiseinto electrical power for exponentially correlated noise. We tune the parameters to achieve a goodperformance of the device for non-negligible amplitudes of the nonlinearity of the oscillator and thedamping.


Sign in / Sign up

Export Citation Format

Share Document