Methodology in Assessing Liposomal Stability in the Presence of Blood, Clearance from the Circulation of Injected Animals, and Uptake by Tissues

2018 ◽  
pp. 281-300
Keyword(s):  
1975 ◽  
Vol 14 (04) ◽  
pp. 330-338
Author(s):  
L. G. Colombetti ◽  
J. S. Arnold ◽  
W. E. Barnes

SummaryTc-99m pyridoxylidene glutamate has proven to be an excellent biliary scanning agent, far superior in many respect to the commonly used 1-131 rose bengal. The preparation of the compound as previously reported by Baker et al is too time consuming and requires the use of an autoclave which is not available in most nuclear medicine departments. In our facility, we have been preparing similar compounds using several aldehydes and monosodium glutamate to make labeled complexes having the same pharmacological characteristics. The mixture of monosodium glutamate, aldehyde, and Tc-99m pertechnetate is made slightly alkaline, purged with helium, and placed in a sealed vial. The vial, which is protected by a wire basket, is then heated in a laboratory oven at 130° C for a period of 15 to 20 minutes. During this time, the technetium is reduced to a lower valence state and bound to the complex formed. Chromatographic data show that these compounds are chemically similar to that previously reported. The compounds prepared concentrate in the gall bladder of the rabbit in less than 10 minutes. Kinetic studies have been performed on dogs with a scintillation camera and small digital computer to measure rates of blood clearance, liver and gall bladder uptake, and excretion into the intestine. The aldehyde — glutamate complex promises to be a useful scanning agent for the diagnosis of biliary and hepatocellular diseases.


1987 ◽  
Vol 26 (05) ◽  
pp. 202-205 ◽  
Author(s):  
J. Fass ◽  
S. Truong ◽  
U. Büll ◽  
V. Schumpelick ◽  
R. Bares

Radioimmunoscintigraphy (RIS) with 111ln- and 131 I-labelled monoclonal anti bodies (MAbs) against CEA and/or CA 19-9 was performed in 83 patients with various gastrointestinal carcinomas. A total of 276 body regions could be examined. The results of planar scintigraphy and SPECT were compared intraindividually. Using 111 In-labelled MAbs the sensitivity of RIS was significantly improved by SPECT (88.9 vs. 52.4% with planar scintigraphy, p <0.01). For131 l-labelled MAbs the effect was smaller (83.9 vs. 65.6% with planar scintigraphy, n.s.). This finding can be explained by different kinetics and biodistribution of the used MAb preparations.111 In-labelled MAbs with long whole-body retention and rapid blood clearance reveal ideal qualities for SPECT; on the other hand, the short whole-body retention of131 l-labelled MAbs leads to small count rates and therefore long counting times that make delayed SPECT unsuitable in clinical practice


2021 ◽  
Vol 330 ◽  
pp. 493-501
Author(s):  
Zui Zhang ◽  
Yuxiu Chu ◽  
Cheng Li ◽  
Wenjing Tang ◽  
Jun Qian ◽  
...  

1989 ◽  
Vol 14 (1) ◽  
pp. 35-42 ◽  
Author(s):  
Yasuhiro Kobayashi ◽  
Norihiko Kobayashi ◽  
Takeyoshi Minaga ◽  
Michiaki Aihara ◽  
Akiyo Shigematsu
Keyword(s):  

2007 ◽  
Vol 48 (5) ◽  
pp. 1108-1121 ◽  
Author(s):  
Koichi Yasunaga ◽  
Shinichiro Saito ◽  
Yuan-Li Zhang ◽  
Antonio Hernandez-Ono ◽  
Henry N. Ginsberg

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2996
Author(s):  
Julia Y. Ljubimova ◽  
Arshia Ramesh ◽  
Liron L. Israel ◽  
Eggehard Holler

Research has increasingly focused on the delivery of high, often excessive amounts of drugs, neglecting negative aspects of the carrier’s physical preconditions and biocompatibility. Among them, little attention has been paid to “small but beautiful” design of vehicle and multiple cargo to achieve effortless targeted delivery into deep tissue. The design of small biopolymers for deep tissue targeted delivery of multiple imaging agents and therapeutics (mini-nano carriers) emphasizes linear flexible polymer platforms with a hydrodynamic diameter of 4 nm to 10 nm, geometrically favoring dynamic juxtaposition of ligands to host receptors, and economic drug content. Platforms of biodegradable, non-toxic poly(β-l-malic acid) of this size carrying multiple chemically bound, optionally nature-derived or synthetic affinity peptides and drugs for a variety of purposes are described in this review with specific examples. The size, shape, and multiple attachments to membrane sites accelerate vascular escape and fast blood clearance, as well as the increase in medical treatment and contrasts for tissue imaging. High affinity antibodies routinely considered for targeting, such as the brain through the blood–brain barrier (BBB), are replaced by moderate affinity binding peptides (vectors), which penetrate at high influxes not achievable by antibodies.


2021 ◽  
pp. svn-2021-001146
Author(s):  
Roland Roelz ◽  
Christian Scheiwe ◽  
Jürgen Grauvogel ◽  
Istvan Csok ◽  
Volker Arnd Coenen ◽  
...  

BackgroundTo compare the efficacy of two different concepts of cisternal therapy—PREVENTIVE fibrinolysis plus on-demand spasmolysis versus RESCUE spasmolysis—for the prevention of cerebral vasospasm (CVS) and delayed cerebral infarction (DCI) in patients with aneurysmal subarachnoid haemorrhage (aSAH).MethodsRetrospective analysis of 84 aSAH patients selected for cisternal therapy for DCI prevention. 66 high-risk patients received PREVENTIVE cisternal therapy to enhance blood clearance. Either stereotactic catheter ventriculocisternostomy (STX-VCS) or intraoperative placement of a cisterno-ventriculostomy catheter (CVC), followed by fibrinolytic cisternal lavage using urokinase was performed. In case of vasospasm, nimodipine was applied intrathecally. 22 low-risk patients who developed CVS against expectations were selected for STX-VCS as RESCUE intervention for cisternal spasmolysis with nimodipine. Rates of DCI and mean flow velocities of daily transcranial Doppler (TCD) ultrasonographies were evaluated.ResultsDespite a higher prespecified DCI risk, patients selected for PREVENTIVE intervention primarily aiming at blood clearance had a lower DCI rate compared with patients selected for intrathecal spasmolysis as a RESCUE therapy (11.3% vs 18.2%). After intrathecal treatment onset, CVS (TCD>160 cm/s) occurred in 45% of patients with PREVENTIVE and 77% of patients with RESCUE therapy (p=0.013). A stronger response of CVS to intrathecal nimodipine was observed in patients with PREVENTIVE intervention as the mean CVS duration after start of intrathecal nimodipine was 3.2 days compared with 5.8 days in patients with RESCUE therapy (p=0.026).ConclusionsPREVENTIVE cisternal therapy directed at blood clearance is more effective for the prevention of CVS and delayed infarction compared with cisternal RESCUE spasmolysis.Trial registration numberDRKS00016532.


2018 ◽  
Vol 19 (1) ◽  
pp. 1
Author(s):  
Iim Halimah ◽  
Hendris Wongso ◽  
Isti Daruwati

EVALUASI BIOLOGIS 99mTc-glukosa-6-fosfat PADA TIKUS PUTIH (Rattus norvegicus) STOCK SPRAGUE DAWLEY. Kanker merupakan penyebab kematian tertinggi dengan jumlah penderita yang diprediksi akan mengalami peningkatan hingga tujuh kali lipat pada tahun 2030. Pengendalian penyakit melalui deteksi dini DAN diagnosis yang lebih akurat melalui aplikasi teknik nuklir diharapkan dapat membantu penyembuhan penyakit kanker pada stadium awal. 99mTc-glukosa-6-fosfat merupakan radiofarmaka yang penggunaannya ditujukan untuk diagnosis kanker, dan diharapkan  dapat diaplikasikan terutama di rumah sakit yang tidak memiliki fasilitas PET (Positron Emission Tomography) dan siklotron. Telah dilakukan uji lanjutan analisis bioafinitas sel kanker terhadap 99mTc-glukosa-6-fosfat melalui serangkaian pengujian pada hewan model yang memiliki kanker artifisial, antara lain uji biodistribusi, uji pencitraan, uji blood clearance, dan uji renal clearance. Uji biodistribusi 99mTc-glukosa-6-fosfat menunjukkan adanya akumulasi radiofarmaka di dalam jaringan target yaitu jaringan kanker sebesar 6,23% pada interval waktu 15 menit setelah injeksi. Namun demikian, selain di jaringan kanker, radiofarmaka ini diakumulasi cukup tinggi di tulang yaitu sebesar 23,99% pada 15 menit setelah injeksi, sehingga akan berpengaruh pada saat uji pencitraan. Hasil uji pencitraan menunjukkan bahwa 99mTc-glukosa-6-fosfat terakumulasi di dalam jaringan tumor/kanker. Radiofarmaka ini dapat dikatakan cepat dikeluarkan dari tubuh berdasarkan hasil uji blood clearance dan renal clearance yang menunjukkan bahwa aktivitas radiofarmaka di dalam tubuh sudah menurun drastis pada 15 menit setelah injeksi (1,25%). Berdasarkan hasil penelitian dapat disimpulkan bahwa radiofarmaka 99mTc-glukosa-6-fosfat terakumulasi di dalam jaringan kanker artifisial. Akan tetapi karena terdapat akumulasi yang cukup signifikan pada tulang, maka perlu dilakukan reformulasi radiofarmaka ini, tanpa menggunakan Na-pirofosfat.


Sign in / Sign up

Export Citation Format

Share Document