On The Use Of Taxonomic Concepts In Support Of Biodiversity Research And Taxonomy

Author(s):  
Nico Franz ◽  
Robert Peet ◽  
Alan Weakley
Author(s):  
Pierre Taberlet ◽  
Aurélie Bonin ◽  
Lucie Zinger ◽  
Eric Coissac

Environmental DNA (eDNA), i.e. DNA released in the environment by any living form, represents a formidable opportunity to gather high-throughput and standard information on the distribution or feeding habits of species. It has therefore great potential for applications in ecology and biodiversity management. However, this research field is fast-moving, involves different areas of expertise and currently lacks standard approaches, which calls for an up-to-date and comprehensive synthesis. Environmental DNA for biodiversity research and monitoring covers current methods based on eDNA, with a particular focus on “eDNA metabarcoding”. Intended for scientists and managers, it provides the background information to allow the design of sound experiments. It revisits all steps necessary to produce high-quality metabarcoding data such as sampling, metabarcode design, optimization of PCR and sequencing protocols, as well as analysis of large sequencing datasets. All these different steps are presented by discussing the potential and current challenges of eDNA-based approaches to infer parameters on biodiversity or ecological processes. The last chapters of this book review how DNA metabarcoding has been used so far to unravel novel patterns of diversity in space and time, to detect particular species, and to answer new ecological questions in various ecosystems and for various organisms. Environmental DNA for biodiversity research and monitoring constitutes an essential reading for all graduate students, researchers and practitioners who do not have a strong background in molecular genetics and who are willing to use eDNA approaches in ecology and biomonitoring.


2008 ◽  
Vol 43 (3) ◽  
pp. 245-257 ◽  
Author(s):  
Michael W. Palmer ◽  
Daniel J. McGlinn ◽  
Jason D. Fridley

2015 ◽  
Vol 26 ◽  
pp. 162-172 ◽  
Author(s):  
Leonardo Candela ◽  
Donatella Castelli ◽  
Gianpaolo Coro ◽  
Lucio Lelii ◽  
Francesco Mangiacrapa ◽  
...  

2014 ◽  
Vol 39 (4) ◽  
pp. 323-341 ◽  
Author(s):  
Christoph Görg ◽  
Joachim H. Spangenberg ◽  
Vera Tekken ◽  
Benjamin Burkhard ◽  
Dao Thanh Truong ◽  
...  

Genome ◽  
2019 ◽  
Vol 62 (3) ◽  
pp. 96-107 ◽  
Author(s):  
Sylvain Delabye ◽  
Rodolphe Rougerie ◽  
Sandrine Bayendi ◽  
Myrianne Andeime-Eyene ◽  
Evgeny V. Zakharov ◽  
...  

Biodiversity research in tropical ecosystems—popularized as the most biodiverse habitats on Earth—often neglects invertebrates, yet invertebrates represent the bulk of local species richness. Insect communities in particular remain strongly impeded by both Linnaean and Wallacean shortfalls, and identifying species often remains a formidable challenge inhibiting the use of these organisms as indicators for ecological and conservation studies. Here we use DNA barcoding as an alternative to the traditional taxonomic approach for characterizing and comparing the diversity of moth communities in two different ecosystems in Gabon. Though sampling remains very incomplete, as evidenced by the high proportion (59%) of species represented by singletons, our results reveal an outstanding diversity. With about 3500 specimens sequenced and representing 1385 BINs (Barcode Index Numbers, used as a proxy to species) in 23 families, the diversity of moths in the two sites sampled is higher than the current number of species listed for the entire country, highlighting the huge gap in biodiversity knowledge for this country. Both seasonal and spatial turnovers are strikingly high (18.3% of BINs shared between seasons, and 13.3% between sites) and draw attention to the need to account for these when running regional surveys. Our results also highlight the richness and singularity of savannah environments and emphasize the status of Central African ecosystems as hotspots of biodiversity.


Author(s):  
Alain Maasri ◽  
Sonja Jähnig ◽  
Mihai Adamescu ◽  
Rita Adrian ◽  
Claudio Baigun ◽  
...  

Freshwater biodiversity is declining dramatically, and the current biodiversity crisis requires defining bold goals and mobilizing substantial resources to meet the challenges. While the reasons are varied, both research and conservation of freshwater biodiversity lag far behind efforts in the terrestrial and marine realms. We identify fifteen pressing global needs to support informed global freshwater biodiversity stewardship. The proposed agenda aims to advance freshwater biodiversity research globally as a critical step in improving coordinated action towards its sustainable management and conservation.


Sign in / Sign up

Export Citation Format

Share Document