Kane’s Method in Robotics

Author(s):  
Keith Buffinton
2014 ◽  
Vol 19 (2) ◽  
pp. 146-154 ◽  
Author(s):  
Ke Yang ◽  
Xu-yang Wang ◽  
Tong Ge ◽  
Chao Wu

Mechanika ◽  
2017 ◽  
Vol 22 (6) ◽  
Author(s):  
Lu Ming ◽  
Gu Wenbin ◽  
Liu Jianqing ◽  
Wang Zhenxiong ◽  
Xu Jinling

Author(s):  
Ali Meghdari ◽  
Farbod Fahimi

Abstract Generalization of Kane’s equations of motion for elastic multibody systems is considered. Initially, finite element techniques are used to generate the elastic form of generalized coordinates. Then, the number of elastic coordinates are reduced by the component mode synthesis. Finally, Kane’s method is applied to obtain the equations of motion of such systems. Using this method, dynamic model of an elastic robot with one degree of freedom is presented.


Author(s):  
Ramin Masoudi ◽  
Mojtaba Mahzoon

A free-floating space robot with four linkages, two flexible arms and a rigid end-effector that are mounted on a rigid spacecraft; is studied in this paper. The governing equations are derived using Kane’s method. The powerful tools of Kane’s approach in incorporating motion constraints have been applied in the dynamic model. By including the motion constraints in the kinematic and dynamic equations, a two way coupling between the spacecraft motion and manipulator motion is achieved. The assumed mode method is employed to express elastic displacements, except that the associated admissible functions are supplanted by quasicomparison functions. By a perturbation approach, the resulting nonlinear problem is separated into two sets of equations: one for rigid-body maneuvering of the robot and the other for elastic vibrations suppression and rigid-body perturbation control. The kinematic redundancy of the manipulator system is removed by exploiting the conservation of angular momentum law that makes the rigid manipulator system nonholonimic. Nonholonomic constraints, resulted from the nonintegrability of angular momentum, in association with equations obtained from conservation of linear momentum and direct differential kinematics generate a set of ordinary differential equations that govern the motion tracking of the robot. The digitalized linear quadratic regulator (LQR) with prescribed degree of stability is used as the feedback control scheme to suppress vibrations. A numerical example is presented to show the numerical preferences of using Kane’s method in deriving the equations of motion and also the efficacy of the control scheme. Acquiring a zero magnitude for spacecraft attitude control moment approves the free-floating behavior of the space robot in which considerable amount of energy is saved.


Author(s):  
Arun K. Banerjee ◽  
Mark Lemak

This paper deals with the motion of mechanical systems with non-ideal constraints, defined as constraints where the forces associated with the constraint do work. The first objective of the paper is to show that two newly published formulations of equations of motion of systems with such non-ideal constraints are unnecessarily complex for situations where the non-ideal constraint force does not depend on the ideal constraint force, because they introduce and then eliminate these non-working constraint forces. We point out that a method already exists for nonideal constraints, namely, Kane’s equations, which are simpler because, among other things, they are based on automatic elimination of non-working constraints. The examples considered in these recent publications are worked out with Kane’s method to show the applicability and simplicity of Kane’s method for non-ideal constraints. A second objective of the paper is to present an alternative form of equations for systems where the non-ideal constraint force depends on the ideal constraint force, as in the case of Coulomb friction. The formulation is shown to lend itself naturally to also analyzing impact dynamics. The method is applied to the dynamics of a slug moving against friction on a moving ellipsoidal surface. Such a crude model may simulate, in essence, propellant motion in a tank in zero-g, or during docking of a spacecraft.


Sign in / Sign up

Export Citation Format

Share Document