Tortuosity of crack path, fracture toughness and scale effect in brittle fracture

Alloy Digest ◽  
1980 ◽  
Vol 29 (11) ◽  

Abstract The 21/4% Nickel Steel possesses a combination of moderate strength and superior resistance to brittle fracture at subzero temperatures. It is one of the most economical materials for the construction of equipment to operate at temperatures as low as -90 F. It is intended primarily for welded pressure vessels. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SA-378. Producer or source: Alloy steel mills and foundries.


2021 ◽  
Vol 57 (4) ◽  
pp. 569-580
Author(s):  
V. D. Kurguzov ◽  
A. G. Demeshkin

Author(s):  
D A Hills ◽  
R L Munisamy ◽  
D Nowell ◽  
A G Atkins

A simplified method of analysing the characteristic horseshoe cracks appearing behind a spherical indenter sliding along the surface of a brittle material, is described. The technique provides a reliable means of estimating the fracture toughness of the material and an explanation of the inter-crack spacing, which is found to be independent of the sliding speed.


2002 ◽  
Vol 29 (4) ◽  
pp. 567-575 ◽  
Author(s):  
M.M Reda Taha ◽  
X Xiao ◽  
J Yi ◽  
N G Shrive

As new structural concepts such as partial prestressing and steel-free bridge decks are more widely accepted and used, there is an increasing need for a reliable and reproducible fracture performance criterion that can describe resistance to crack growth. The required criterion should also be easy to determine experimentally so that it can be incorporated in structural specifications. The nonlinear behaviour of concrete and masonry materials suggested that quasi-brittle fracture mechanics approaches may be the most suitable for determining their fracture performance. The effective elastic crack model originally developed by Karihaloo and Nallathambi (1989) was modified to evaluate the critical crack depth under pure flexural stresses. A computer program was developed to calculate this depth iteratively from the experimental results. An experimental programme examining the fracture performance of four different structural materials (high performance concrete, mortar, fibre reinforced concrete, and masonry units) was carried out to examine the applicability of the model. As no post-peak data are required for the analysis, the model allows the use of a simple test setup to evaluate the fracture performance of quasi-brittle materials experimentally.Key words: fracture toughness, linear elastic fracture mechanics (LEFM), elastoplastic fracture mechanics (EPFM), quasi-brittle fracture mechanics, effective elastic crack, high performance concrete, masonry, fibre reinforced concrete.


Sign in / Sign up

Export Citation Format

Share Document