butt weld
Recently Published Documents


TOTAL DOCUMENTS

339
(FIVE YEARS 66)

H-INDEX

15
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Xiaodan Yuan A ◽  
Yuan Zhang B ◽  
Zhijun Li ◽  
Kun Yu C ◽  
Jinlong Wang D

Abstract The critical problem to accurately characterizing defects in GH3535 alloy weld is the deflection of the acoustic beam and scattering due to the coarse columnar grains. Signal-to-noise ratio is an important index to indicate whether the grain scattering is severein the ultrasonic inspection. In this paper, the phased array ultrasonic testing of GH3535 alloy butt weld was studied using sector scan mode with linear array probe. The soundfield characteristics of the linear array probe with different focusing parameters were analyzed, and the signal-to-noise ratio in the detection was calculated. The results show that: the acoustic beam of the linear array probe can cover the weld,based on the removal of weld reinforcement. The signal-to-noise ratio of transverse hole with φ3mm located at the weld-fusion lineis more than 15dB, when the front end ofthe probe is located directly above the transverse hole of weld-fusion line.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5532
Author(s):  
Hany S. Abdo ◽  
Asiful H. Seikh

This paper investigates an experimental design of laser butt welding of S32520 duplex stainless steel, which has been passed out with the help of a pulsed Nd: YAG laser supply. The intention of the present research is to learn the impact of beam diameter, welding speed, and laser power on the superiority of the butt weld. The individuality of butt joints has been characterized in terms of tensile properties, fractography, and hardness. It was noticed that unbalanced particle orientations indirectly produce a comparatively fragile quality in the laser welded joint. The outcome of varying process parameters and interaction effect of process parameters on ultimate tensile strength and micro hardness were studied through analysis of experimental data. With different process parameters, the heat energy delivered to the material was changed, which was reflected in tensile strength measurement for different welded samples. From this present research, it was shown that, up to a certain level, an increase in process parameters amplified the tensile strength, but after that, certain level tensile strength decreased with the increase in process parameters. When process parameters exceeded that certain level, the required amount of heat energy was not delivered to the material, resulting in low bead width and less penetration, thus producing less strength in the welded joint. Less strength leads to more ductile weld joints. Microhardness was higher in the weld zone than in the base region of welded samples. However, the heat affected zone had a high microhardness range.


Author(s):  
S. M. Senthil ◽  
Manickam Bhuvanesh Kumar

Joining of polymers are usually carried out using adhesives that has a deteriorating quality at elevated working conditions thus limiting its application areas. Friction stir welding (FSW) is a growing solid-state welding technology, with applications including the welding of lightweight materials. FSW was recently introduced for joining thermoplastics materials and found successful. This study attempts in employing FSW to join polylactic acid (PLA)-based 3D printed engineering components and assess the effect of FSW process parameters (tool rotational speed and traverse speed) on the weld property. The present work uses the FSW process to butt weld 5 mm thick 3D printed PLA sheets with taper cylindrical profiled tool. For the experimentation, three different combinations of feed rates and pin rotational speeds are considered. Based on joint efficiency evaluation, it is found that tool rotational speed of 1400 rpm combined with 10 mm/min transverse speed produces the weld with high joint efficiency of 40%.


2021 ◽  
Vol 184 ◽  
pp. 106809
Author(s):  
Jingyao Li ◽  
Shidong Nie ◽  
Han Kou ◽  
Mohamed Elchalakani ◽  
Xiao Yu ◽  
...  

2021 ◽  
Vol 28 (2) ◽  
pp. 170-185
Author(s):  
Egor V. Kuzmin ◽  
Oleg E. Gorbunov ◽  
Petr O. Plotnikov ◽  
Vadim A. Tyukin ◽  
Vladimir A. Bashkin

To ensure traffic safety of railway transport, non-destructive tests of rails are regularly carried out by using various approaches and methods, including eddy-current flaw detection methods. An automatic analysis of large data sets (defectograms) that come from the corresponding equipment is an actual problem. The analysis means a process of determining the presence of defective sections along with identifying structural elements of railway tracks in defectograms. At the same time, severity estimation of defined defects is also of great interest. This article continues the cycle of works devoted to the problem of automatic recognition of images of defects and rail structural elements in eddy-current defectograms. In the process of forming these images, only useful signals are taken into account, the threshold levels of amplitudes of which are determined automatically from eddy-current data. The article is devoted to the issue of constructing severity estimation of found defects with various lengths. The construction of the severity estimation is based on a concept of the generalized relative amplitude of useful signals. A relative amplitude is a ratio of an actual signal amplitude to a corresponding threshold level of useful signals. The generalized relative amplitude is calculated by using the entropy of the half-normal distribution, which is assumed to be a model for a probability distribution of an appearance of certain relative amplitudes in an evaluated defect. Tuning up the formula for calculating severity estimation of a defect is carried out on the basis of eddy-current records of structural elements. As a reference of the most dangerous defect, the bolted rail joint is considered. It models a fracture of a rail. A reference weak defect is a flash butt weld, a defectogram of which contains signals with low amplitude values. The proposed approach to severity estimation of defects is shown by examples.


2021 ◽  
Vol 55 (3) ◽  
Author(s):  
Josef Bradáč ◽  
Jiří Hozman ◽  
Jan Lamač

The main objective of this paper was focused on a numerical study related to a proper evaluation of the temperature field during the laser-welding process. The investigated material used for the experiments was Fe3Al, given its properties and promising application potential. The original experiment was based on a 3D model of a butt weld. However, to reduce the computational complexity, a planar variant of the heat-transfer equation with suitable choices of surface and volumetric heat sources, given by modified Gaussian pulses, is used to model the temperature distribution in the fixed cross cut during the laser welding. Subsequently, the numerical scheme based on the discontinuous Galerkin method was employed to evaluate the temperature field more properly and to identify the main characteristics of the molten zone. Finally, the numerical study was performed for various combinations of the welding parameters, such as laser-beam power and welding speed. The obtained results were in good agreement with the expected behavior, and thus illustrate the optimization potential of the proposed numerical scheme in the similar issues of a laser-welding processes.


2021 ◽  
Vol 20 (3) ◽  
Author(s):  
Carlos Andrés Galán-Pinilla ◽  
Luz Amparo Quintero-Ortiz ◽  
Julián Orlando Herrera-Ortiz

This research evaluates the effect of the variables of Phased Array Ultrasonic Testing(PAUT) on the sectoral angular beam scans “S-Scan” and the geometric morphology of planar discontinuities such as the inclination forthe ultrasonic beam and the shape of the extremity on accuracy in measurements. The study was carried out in two stages. Duringthe first stage, eight ASTM A36 steel samples with machined notches by penetration from EDM and a welded sample with lack of penetration in a butt weld were designed and produced. In the second stage, it wasmeasured the size of the discontinuities using ultrasound inspection and different configurations of the phase arrangement. The effect of each variable and inspection setting with errors between 0.2 % and 120 % were determined by statistical analysis.


Sign in / Sign up

Export Citation Format

Share Document