A fast incremental-iterative procedure for ultimate strength analysis and design of composite steel-concrete cross-sections

Author(s):  
Muhammad Zubair Muis Alie ◽  
Ganding Sitepu ◽  
Juswan Sade ◽  
Wahyuddin Mustafa ◽  
Andi Mursid Nugraha ◽  
...  

This paper discusses the influence of asymmetrically damaged ships on the ultimate hull girder strength. When such damages take place at the asymmetric location of cross sections, not only translation but also inclination of instantaneous neutral axis takes place during the process of the progressive collapse. To investigate this effect, the Finite Element Analysis (FEA) is employed and the damage is assumed in the middle hold. The collision damage is modeled by removing the plate and stiffener elements at the damage region assuming the complete loss of the capacity at the damage part. For the validation results obtained by Finite Element Analysis of the asymmetrically damaged ship hull girder, the simplified method is adopted. The Finite Element method of ultimate strength analysis of a damaged hull girder can be a practical tool for the ship hull girder after damages, which has become one of the functional requirements in IMO Goal Based Ship Construction Standard.


Author(s):  
Hiroaki Ogawa ◽  
Tomoki Takami ◽  
Akira Tatsumi ◽  
Yoshiteru Tanaka ◽  
Shinichi Hirakawa ◽  
...  

In this study, FE modeling method for the buckling/ultimate strength analysis of a continuous stiffened panel under combined shear and thrust is proposed. In order to validate the proposed method, shear buckling collapse tests of a stiffened panel and FEM analysis are carried out. As the result of these, it is confirmed that the buckling collapse behavior and the ultimate strength estimated by the proposed method are in good agreement with the test results.


Sign in / Sign up

Export Citation Format

Share Document