Low carbon rice husk ash—A sustainable supplementary cementing material

2014 ◽  
Vol 600 ◽  
pp. 240-249
Author(s):  
Everton Jose da Silva ◽  
Maria Lidiane Marques ◽  
Antonio Rogério B. Vasconcelos ◽  
Jorge L. Akasaki ◽  
Mauro M. Tashima ◽  
...  

Nowadays, the reuse of waste products in the construction process is a priority research area. Several industrial and agricultural waste products have been investigated, such as fly ash, sugar cane bagasse ash and rice husk ash. This paper analyzes a very important aspect under intense discussion in the scientific community: the Rice Husk Ash (RHA) grinding process. This paper investigates a low carbon RHA with high pozzolanic reactivity produced under uncontrolled burning conditions. The compressive strength of mortar specimens prepared using both ground and natural RHA were tested for 3-56 days and the capillarity absorption was measured for mortars cured during 28 days. Very promising and interesting results were obtained using natural rice husk ash in the production of blended mortars.


2021 ◽  
Vol 293 ◽  
pp. 02018
Author(s):  
HAO Tong ◽  
LIU Qian ◽  
Fa-Guang Leng ◽  
Tian-Long Qiao

Rice husk ash is a kind of volcanic ash material with high silicon. This also provides a feasibility for rice husk ash as cement-based auxiliary cementing material. China is rich in rice husk resources, and the rice husk ash is stacked. Using rice husk ash (RHA) instead of traditional cementitious materials can effectively solve the environmental pollution caused by the accumulation of rice husk ash. Domestic and international scholar have added rice husk ash as mineral admixture to concrete, but the utilization rate is very low. In order to increase the added value of rice husk ash, the high silicon property of rice husk ash was used to solidify soil. The application range of solidified soil is wide, the requirements for materials are not high, and the functions are different, which can realize the extensive use of rice husk ash. This paper summarizes the literature on comprehensive utilization of rice husk ash at home and abroad, systematically expounds the physicochemical properties and production process of rice husk ash, introduces the application of rice husk ash in solidified soil, and points out the unsolved problems in this field, which provides a direction for the further development.


2014 ◽  
Vol 353 ◽  
pp. 96-100
Author(s):  
Chen Huang ◽  
Yi Miao Zhu ◽  
Hou Lei Zhang ◽  
Xin Zhi Liu

Rice husk ash (RHA) is the product of rice husk pyrolysis or combustion, which contains inherent ash in original rice husk and non-converted fixed carbon. Due to large amounts of inherent silicon dioxide in rice husk, the decarbonized residue of RHA has great value as industrial materials. One basic method to remove carbon from RHA is roasting. Because of low carbon content in RHA and low roasting reaction velocity, the roasting process takes a long time. In this case, fixed-bed roasting is suitable for removing carbon from RHA. In the present work, experimental study on RHA decarbonization is conducted based on a specially-designed multi-section fixed-bed roasting. The experimental results show that under the experimental conditions, the flame propagation spread of RHA in fixed beds is in the range 0.833 to 0.121mm/s. The results documented in this paper provide the basis for further developing large-scale engineering devices.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Jinrong Ma ◽  
Yunhe Su ◽  
Yuyi Liu ◽  
Xiangling Tao

Expansive soil has harmful effect on engineering. Rice husk ash (RHA) has high pozzolanic activity, so it can form new cementing material with lime or cement to solidify soil. In this paper, the tests of free expansion rate, water ratio limit, and optimum moisture content (OMC) are carried out; then, RHA and lime were added to artificial soil in different proportions of 5, 10, 15, and 20% by weight, in which the ratio of RHA to lime is 80 : 20. The unconfined compressive strength (UCS) in different curing age is measured, and the improvement effect of RHA and lime to expansive soil can be obtained. Finally, the reason of improvement effect is explained by using the scanning electron microscope (SEM). The results of the study show that (1) for the best utilization effect, the optimum percentage of RHA is 12% and lime is 3%; (2) the UCS is 2.6 times of the pure soil after curing of 14 d under the optimum percentage; (3) the curing age has a significant effect on strength; (4) the main reason for the strength increase of the modified soil is that the crystal produced by the pozzolanic activity fills the pores of the soil.


2019 ◽  
Vol 221 ◽  
pp. 1-11 ◽  
Author(s):  
Yuyi Liu ◽  
Che-Way Chang ◽  
Abdoullah Namdar ◽  
Yuexin She ◽  
Chen-Hua Lin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document