Application of risk based approach to flood risk assessment in urban areas

Author(s):  
T Rashidul Kabir ◽  
B Gersonius ◽  
C Zevenbergen ◽  
P van Gelder ◽  
Mohammad Shah
2020 ◽  
Vol 12 (24) ◽  
pp. 10487
Author(s):  
Felix Julian Othmer ◽  
Dennis Becker ◽  
Laura Miriam Schulte ◽  
Stefan Greiving

Urban flooding caused by heavy rainfall confronts cities worldwide with new challenges. Urban flash floods lead to considerable dangers and risks. In cities and urban areas, the vulnerability to pluvial flooding is particularly high. In order to be able to respond to heavy rainfall events with adaptation strategies and measures in the course of urban development, the spatial hazards, vulnerabilities and risks must first be determined and evaluated. This article shows a new, universally applicable methodical approach of a municipal pluvial flood risk assessment for small and medium-sized cities. We follow the common approaches to risk and vulnerability analyses and take into account current research approaches to heavy rainfall and urban pluvial flooding. Based on the intersection of the hazard with the vulnerability, the pluvial flood risk is determined. The aim of the present pluvial flood risk assessment was to identify particularly affected areas in the event of heavy rainfall in the small German city of Olfen. The research procedure and the results have been coordinated with the city’s administration within the framework of a real laboratory. In the course of the science–policy cooperation, it was ensured that the results could be applied appropriately in urban developments.


Geosciences ◽  
2017 ◽  
Vol 7 (4) ◽  
pp. 123 ◽  
Author(s):  
Costas Armenakis ◽  
Erin Du ◽  
Sowmya Natesan ◽  
Ravi Persad ◽  
Ying Zhang

2015 ◽  
Vol 12 (8) ◽  
pp. 8005-8033 ◽  
Author(s):  
X. Jiang ◽  
H. Tatano

Abstract. Information about the spatial distribution of flood risk is important for integrated urban flood risk management. Focusing on urban areas, spatial flood risk assessment must reflect all risk information derived from multiple flood sources: rivers, drainage, coastal flooding etc. that may affect the area. However, conventional flood risk assessment deals with each flood source independently, which leads to an underestimation of flood risk in the floodplain. Even in floodplains that have no risk from coastal flooding, flooding from river channels and inundation caused by insufficient drainage capacity should be considered simultaneously. For integrated flood risk management, it is necessary to establish a methodology to estimate flood risk distribution across a floodplain. In this paper, a rainfall design method for spatial flood risk assessment, which considers the joint effects of multiple flood sources, is proposed. The concept of critical rainfall duration determined by the concentration time of flooding is introduced to connect response characteristics of different flood sources with rainfall. A copula method is then adopted to capture the correlation of rainfall amount with different critical rainfall durations. Rainfall events are designed taking advantage of the copula structure of correlation and marginal distribution of rainfall amounts within different critical rainfall durations. A case study in the Otsu River Basin, Osaka prefecture, Japan was conducted to demonstrate this methodology.


Sign in / Sign up

Export Citation Format

Share Document