scholarly journals A Methodological Approach to Municipal Pluvial Flood Risk Assessment Based on a Small City Case Study

2020 ◽  
Vol 12 (24) ◽  
pp. 10487
Author(s):  
Felix Julian Othmer ◽  
Dennis Becker ◽  
Laura Miriam Schulte ◽  
Stefan Greiving

Urban flooding caused by heavy rainfall confronts cities worldwide with new challenges. Urban flash floods lead to considerable dangers and risks. In cities and urban areas, the vulnerability to pluvial flooding is particularly high. In order to be able to respond to heavy rainfall events with adaptation strategies and measures in the course of urban development, the spatial hazards, vulnerabilities and risks must first be determined and evaluated. This article shows a new, universally applicable methodical approach of a municipal pluvial flood risk assessment for small and medium-sized cities. We follow the common approaches to risk and vulnerability analyses and take into account current research approaches to heavy rainfall and urban pluvial flooding. Based on the intersection of the hazard with the vulnerability, the pluvial flood risk is determined. The aim of the present pluvial flood risk assessment was to identify particularly affected areas in the event of heavy rainfall in the small German city of Olfen. The research procedure and the results have been coordinated with the city’s administration within the framework of a real laboratory. In the course of the science–policy cooperation, it was ensured that the results could be applied appropriately in urban developments.

Author(s):  
T Rashidul Kabir ◽  
B Gersonius ◽  
C Zevenbergen ◽  
P van Gelder ◽  
Mohammad Shah

2019 ◽  
Vol 79 (9) ◽  
pp. 1798-1807
Author(s):  
Lena Simperler ◽  
Florian Kretschmer ◽  
Thomas Ertl

Abstract Pluvial flood risk is increasing in urban and rural areas due to changes in precipitation patterns and urbanization. Pluvial flooding is often associated with insufficient capacities of the sewer system or low surface drainage efficiency of urban areas. In hilly areas, hillside runoff additionally affects the risk of pluvial flooding. This article introduces a methodical approach and related evaluation criteria for a systematic analysis of potential causes of urban pluvial flooding. In the presented case study, the cause of pluvial flooding at two selected sites in a hillside settlement is investigated based on a coupled 1D/2D model of the whole hydrological catchment. The results show that even though bottlenecks in the sewer system are important, the effect of low surface drainage efficiency and hillside runoff greatly influence pluvial flooding. The knowledge of different causes of flooding can be further used for selecting and positioning appropriate adaption measures. The presented approach proved its practicability and can thus serve as a guidance and template for other applications to gain better understanding and knowledge of local specific pluvial flooding events.


Geosciences ◽  
2017 ◽  
Vol 7 (4) ◽  
pp. 123 ◽  
Author(s):  
Costas Armenakis ◽  
Erin Du ◽  
Sowmya Natesan ◽  
Ravi Persad ◽  
Ying Zhang

2015 ◽  
Vol 12 (8) ◽  
pp. 8005-8033 ◽  
Author(s):  
X. Jiang ◽  
H. Tatano

Abstract. Information about the spatial distribution of flood risk is important for integrated urban flood risk management. Focusing on urban areas, spatial flood risk assessment must reflect all risk information derived from multiple flood sources: rivers, drainage, coastal flooding etc. that may affect the area. However, conventional flood risk assessment deals with each flood source independently, which leads to an underestimation of flood risk in the floodplain. Even in floodplains that have no risk from coastal flooding, flooding from river channels and inundation caused by insufficient drainage capacity should be considered simultaneously. For integrated flood risk management, it is necessary to establish a methodology to estimate flood risk distribution across a floodplain. In this paper, a rainfall design method for spatial flood risk assessment, which considers the joint effects of multiple flood sources, is proposed. The concept of critical rainfall duration determined by the concentration time of flooding is introduced to connect response characteristics of different flood sources with rainfall. A copula method is then adopted to capture the correlation of rainfall amount with different critical rainfall durations. Rainfall events are designed taking advantage of the copula structure of correlation and marginal distribution of rainfall amounts within different critical rainfall durations. A case study in the Otsu River Basin, Osaka prefecture, Japan was conducted to demonstrate this methodology.


2009 ◽  
Vol 9 (3) ◽  
pp. 789-799 ◽  
Author(s):  
C. Neuhold ◽  
P. Stanzel ◽  
H. P. Nachtnebel

Abstract. Risk zonation maps are mostly derived from design floods which propagate through the study area. The respective delineation of inundated flood plains is a fundamental input for the flood risk assessment of exposed objects. It is implicitly assumed that the river morphology will not vary, even though it is obvious that the river bed elevation can quickly and drastically change during flood events. The objectives of this study were to integrate the river bed dynamics into the flood risk assessment procedure and to quantify associated uncertainties. The proposed concept was applied to the River Ill in the Western Austrian Alps. In total, 138 flood and associated sediment transport scenarios were considered, simulated and illustrated for the main river stem. The calculated morphological changes of the river bed at the moment of peak flow provided a basis to estimate the variability of possible water surface levels and inundation lines which should be incorporated into flood hazard assessment. In the context of vulnerability assessment an advanced methodological approach to assess flood risk based on damage probability functions is described.


Sign in / Sign up

Export Citation Format

Share Document