Hydrodynamic interaction between gravity-driven and over-pressured groundwater flow and its consequences on soil and wetland salinisation

2013 ◽  
pp. 285-298
2021 ◽  
Author(s):  
Tom Vincent Schintgen ◽  
Inga Sigrun Moeck

Abstract The Molasse Basin in Southern Germany is part of the North Alpine Foreland Basin and hosts the largest accumulation of deep geothermal production fields in Central Europe. Despite the vast development of geothermal energy utilization projects especially in the Munich metropolitan region, the evolution of and control factors on the natural geothermal field are still debated. Especially seismic and deep well data from extensive oil and gas exploration in the Molasse Basin led to conceptual hydrogeological and thermal-hydraulic models. Corrected borehole-temperature data helped to constrain subsurface temperatures by geostatistical interpolation and facilitated the set-up of 3D temperature models. However, within the geothermally used Upper Jurassic (Malm) carbonate aquifer, temperature anomalies such as the Wasserburg Trough anomaly to the east of Munich and their underlying physical processes are yet poorly understood. From other foreland basins like the Alberta Basin in Western Canada, it is known that climate during the last ice age has a considerable effect even on subsurface temperatures up to two kilometres depth. Therefore, we study the impact of paleoclimatic changes on the Molasse Basin during the last 130 ka including the Würm glaciation. We consider the hydraulic and thermal effects of periglacial conditions like permafrost formation and the impact of the numerous glacial advances onto the Molasse Basin. The major difference between the thermal-hydraulic regime in the western and eastern parts of the Southern German Molasse Basin are delineated by calculating two contrasting permeability scenarios of the heterogeneously karstified Malm carbonate aquifer. Thermal-hydraulic modelling reveals the effect of recurrent glacial periods on the geothermally drillable subsurface, which is minor compared to the effect of permeability-related, continuous gravity-driven groundwater flow as a major heat transport mechanism. Practically, the results might help to reduce the exploration risk for geothermal energy projects in the Molasse Basin. More importantly, this study serves as a reference for the comparison and understanding of the interplay of high permeability aquifers, gravity-driven groundwater flow and paleoclimate in other orogenic foreland basins worldwide.


2021 ◽  
Author(s):  
Timea Trásy-Havril ◽  
Szilvia Szkolnikovics-Simon ◽  
Judit Mádl-Szőnyi

<p>Climate change induced alteration of recharge is expected to have diverse effects on groundwater levels, which could also modify the fragmentation and hierarchy of groundwater flow systems, including their dimensions and relative positions.</p><p>This study put emphasis on how flow system hierarchy may change due to recharge reduction in complex, vertically superimposed groundwater flow systems with different fluid driving forces through an example of the Duna-Tisza Interfluve in Hungary. Two main groundwater flow domain was identified by previous authors in this area with a separate source of water. Recharge to the upper, unconfined, gravitational regime is inferred to occur from infiltrating precipitation, while the underlying confined, overpressured flow domain is maintained by pore volume reduction due to tectonic compression of the basement (Tóth and Almási 2001, Almási 2003, Mádl-Szőnyi and Tóth 2009). The exposure of these groundwater flow systems, one is driven by gravity and other one is by overpressure, is completely different to the effects of changes in hydrologic parameters. Local scale gravity-driven flow systems are identified to be the most vulnerable to atmospheric processes (Kurylyk et al., 2014), while overpressured upward flow is driven by tectonic compression, and thus independent of climatic variation.</p><p>Two-dimensional transient numerical simulations were performed to gain insight into the response of this complex flow system to the predicted climate change of the region. Special emphasis is placed on i) how relative rate and influence of the different driving forces may change due to the predicted recharge reduction, ii) how the fragmentation of the flow field may alter, iii) how the penetration depth of upper, gravity-driven flow field may adjust to these changes and iv) how groundwater-related shallow surface water bodies will be affected by these changes.</p><p>Understanding the effects of changed hydrologic conditions on such complex flow patterns and recharge-discharge relationships as well as on interactions with surface water bodies can help to set-up three-dimensional site-specific models. These models provide a base to better mitigate and prepare for the consequences of predicted future changes.</p><p>The research is supported by the ÚNKP-20-4 New National Excellence Program of the Ministry for Innovation and Technology from the source of the National Research, Development and Innovation Fund, as well as by the József and Erzsébet Tóth Endowed Hydrogeology Chair. This work is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 810980.</p>


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Tom Vincent Schintgen ◽  
Inga Sigrun Moeck

AbstractThe Molasse Basin in Southern Germany is part of the North Alpine Foreland Basin and hosts the largest accumulation of deep geothermal production fields in Central Europe. Despite the vast development of geothermal energy utilization projects especially in the Munich metropolitan region, the evolution of and control factors on the natural geothermal field, more specifically the time-varying recharge and discharge governing groundwater and heat flow, are still debated. Within the Upper Jurassic (Malm) carbonate aquifer as the main geothermal reservoir in the Molasse Basin, temperature anomalies such as the Wasserburg Trough anomaly to the east of Munich and their underlying fluid and heat transport processes are yet poorly understood. We delineate the two end members of thermal–hydraulic regimes in the Molasse Basin by calculating two contrasting permeability scenarios of the heterogeneously karstified Malm carbonate aquifer along a model section through the Wasserburg Trough anomaly by means of two-dimensional numerical thermal-hydraulic modelling. We test the sensitivity of the thermal-hydraulic regime with regard to paleoclimate by computing the two Malm permeability scenarios both with a constant surface temperature of 9 °C and with the impact of paleo-temperature changes during the last 130 ka including the Würm Glaciation. Accordingly, we consider the hydraulic and thermal effects of periglacial conditions like permafrost formation and the impact of the numerous glacial advances onto the Molasse Basin. Thermal-hydraulic modelling reveals the effect of recurrent glacial periods on the subsurface targets of geothermal interest, which is minor compared to the effect of permeability-related, continuous gravity-driven groundwater flow as a major heat transport mechanism.


2016 ◽  
Vol 41 ◽  
pp. 10-13 ◽  
Author(s):  
Luca Alberti ◽  
Martino Cantone ◽  
Silvia Lombi ◽  
Alessandra Piana

Sign in / Sign up

Export Citation Format

Share Document