The interplay of Malm carbonate permeability, gravity-driven groundwater flow, and paleoclimate – implications for the geothermal field and potential in the Molasse Basin (Southern Germany), a foreland-basin play

Author(s):  
Tom Vincent Schintgen ◽  
Inga Sigrun Moeck

Abstract The Molasse Basin in Southern Germany is part of the North Alpine Foreland Basin and hosts the largest accumulation of deep geothermal production fields in Central Europe. Despite the vast development of geothermal energy utilization projects especially in the Munich metropolitan region, the evolution of and control factors on the natural geothermal field are still debated. Especially seismic and deep well data from extensive oil and gas exploration in the Molasse Basin led to conceptual hydrogeological and thermal-hydraulic models. Corrected borehole-temperature data helped to constrain subsurface temperatures by geostatistical interpolation and facilitated the set-up of 3D temperature models. However, within the geothermally used Upper Jurassic (Malm) carbonate aquifer, temperature anomalies such as the Wasserburg Trough anomaly to the east of Munich and their underlying physical processes are yet poorly understood. From other foreland basins like the Alberta Basin in Western Canada, it is known that climate during the last ice age has a considerable effect even on subsurface temperatures up to two kilometres depth. Therefore, we study the impact of paleoclimatic changes on the Molasse Basin during the last 130 ka including the Würm glaciation. We consider the hydraulic and thermal effects of periglacial conditions like permafrost formation and the impact of the numerous glacial advances onto the Molasse Basin. The major difference between the thermal-hydraulic regime in the western and eastern parts of the Southern German Molasse Basin are delineated by calculating two contrasting permeability scenarios of the heterogeneously karstified Malm carbonate aquifer. Thermal-hydraulic modelling reveals the effect of recurrent glacial periods on the geothermally drillable subsurface, which is minor compared to the effect of permeability-related, continuous gravity-driven groundwater flow as a major heat transport mechanism. Practically, the results might help to reduce the exploration risk for geothermal energy projects in the Molasse Basin. More importantly, this study serves as a reference for the comparison and understanding of the interplay of high permeability aquifers, gravity-driven groundwater flow and paleoclimate in other orogenic foreland basins worldwide.

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Tom Vincent Schintgen ◽  
Inga Sigrun Moeck

AbstractThe Molasse Basin in Southern Germany is part of the North Alpine Foreland Basin and hosts the largest accumulation of deep geothermal production fields in Central Europe. Despite the vast development of geothermal energy utilization projects especially in the Munich metropolitan region, the evolution of and control factors on the natural geothermal field, more specifically the time-varying recharge and discharge governing groundwater and heat flow, are still debated. Within the Upper Jurassic (Malm) carbonate aquifer as the main geothermal reservoir in the Molasse Basin, temperature anomalies such as the Wasserburg Trough anomaly to the east of Munich and their underlying fluid and heat transport processes are yet poorly understood. We delineate the two end members of thermal–hydraulic regimes in the Molasse Basin by calculating two contrasting permeability scenarios of the heterogeneously karstified Malm carbonate aquifer along a model section through the Wasserburg Trough anomaly by means of two-dimensional numerical thermal-hydraulic modelling. We test the sensitivity of the thermal-hydraulic regime with regard to paleoclimate by computing the two Malm permeability scenarios both with a constant surface temperature of 9 °C and with the impact of paleo-temperature changes during the last 130 ka including the Würm Glaciation. Accordingly, we consider the hydraulic and thermal effects of periglacial conditions like permafrost formation and the impact of the numerous glacial advances onto the Molasse Basin. Thermal-hydraulic modelling reveals the effect of recurrent glacial periods on the subsurface targets of geothermal interest, which is minor compared to the effect of permeability-related, continuous gravity-driven groundwater flow as a major heat transport mechanism.


Geosciences ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 23
Author(s):  
Andrea Di Capua ◽  
Federica Barilaro ◽  
Gianluca Groppelli

This work critically reviews the Eocene–Oligocene source-to-sink systems accumulating volcanogenic sequences in the basins around the Alps. Through the years, these volcanogenic sequences have been correlated to the plutonic bodies along the Periadriatic Fault System, the main tectonic lineament running from West to East within the axis of the belt. Starting from the large amounts of data present in literature, for the first time we present an integrated 4D model on the evolution of the sediment pathways that once connected the magmatic sources to the basins. The magmatic systems started to develop during the Eocene in the Alps, supplying detritus to the Adriatic Foredeep. The progradation of volcanogenic sequences in the Northern Alpine Foreland Basin is subsequent and probably was favoured by the migration of the magmatic systems to the North and to the West. At around 30 Ma, the Northern Apennine Foredeep also was fed by large volcanogenic inputs, but the palinspastic reconstruction of the Adriatic Foredeep, together with stratigraphic and petrographic data, allows us to safely exclude the Alps as volcanogenic sources. Beyond the regional case, this review underlines the importance of a solid stratigraphic approach in the reconstruction of the source-to-sink system evolution of any basin.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 706
Author(s):  
Jacek Majorowicz ◽  
Stephen E. Grasby

We summarize the feasibility of using geothermal energy from the Western Canada Sedimentary Basin (WCSB) to support communities with populations >3000 people, including those in northeastern British Columbia, southwestern part of Northwest Territories (NWT), southern Saskatchewan, and southeastern Manitoba, along with previously studied communities in Alberta. The geothermal energy potential of the WCSB is largely determined by the basin’s geometry; the sediments start at 0 m thickness adjacent to the Canadian shield in the east and thicken to >6 km to the west, and over 3 km in the Williston sub-basin to the south. Direct heat use is most promising in the western and southern parts of the WCSB where sediment thickness exceeds 2–3 km. Geothermal potential is also dependent on the local geothermal gradient. Aquifers suitable for heating systems occur in western-northwestern Alberta, northeastern British Columbia, and southwestern Saskatchewan. Electrical power production is limited to the deepest parts of the WCSB, where aquifers >120 °C and fluid production rates >80 kg/s occur (southwestern Northwest Territories, northwestern Alberta, northeastern British Columbia, and southeastern Saskatchewan. For the western regions with the thickest sediments, the foreland basin east of the Rocky Mountains, estimates indicate that geothermal power up to 2 MWel. (electrical), and up to 10 times higher for heating in MWth. (thermal), are possible.


Author(s):  
Martin Preene ◽  
Mike Chrimes

The Kilsby Tunnel, constructed in the 1830s, faced severe problems when a section of the tunnel, almost 400 m long, encountered unstable ‘quicksand’ conditions. The engineer for the project, Robert Stephenson, developed an extensive groundwater lowering scheme, unique for the time, using steam engines pumping from multiple shafts, to overcome the quicksand. Modern geological information indicates most of the tunnel was in Middle Lias bedrock, but the ‘quicksand’ section passed through a buried channel of water-bearing sand of glacial origin. In the early 19th century the impact of glacial processes on British geology was not widely accepted and, based on contemporary geological knowledge, Stephenson’s problems appear to be genuine unforeseen ground conditions, not predicted by his experienced advisers. It seems just random chance that trial borings missed the buried channel of sand. The work at Kilsby was two decades before Darcy’s law established the theoretical understanding for groundwater flow, and 90 years before Terzaghi’s effective stress theory described how reducing pore water pressures changed ‘quicksand’ into a stable and workable material. Despite the lack of existing theories, Stephenson used careful observations and interpretation of groundwater flow in the ‘quicksand’ to navigate the tunnel project to a successful conclusion.


2012 ◽  
Vol 25 (2) ◽  
pp. 149-171 ◽  
Author(s):  
Eduard Saura ◽  
Jean-Christophe Embry ◽  
Jaume Vergés ◽  
David W. Hunt ◽  
Emilio Casciello ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document