gravitational systems
Recently Published Documents


TOTAL DOCUMENTS

128
(FIVE YEARS 17)

H-INDEX

17
(FIVE YEARS 2)

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Euihun Joung ◽  
Min-gi Kim ◽  
Yujin Kim

Abstract Conformal geometry is studied using the unfolded formulation à la Vasiliev. Analyzing the first-order consistency of the unfolded equations, we identify the content of zero-forms as the spin-two off-shell Fradkin-Tseytlin module of $$ \mathfrak{so}\left(2,d\right) $$ so 2 d . We sketch the nonlinear structure of the equations and explain how Weyl invariant densities, which Type-B Weyl anomaly consist of, could be systematically computed within the unfolded formulation. The unfolded equation for conformal geometry is also shown to be reduced to various on-shell gravitational systems by requiring additional algebraic constraints.


2021 ◽  
Vol 923 (2) ◽  
pp. 271
Author(s):  
C. S. Ng ◽  
A. Bhattacharjee

Abstract We consider the spectrum of eigenmodes in a stellar system dominated by gravitational forces in the limit of zero collisions. We show analytically and numerically using the Lenard–Bernstein collision operator that the Landau modes, which are not true eigenmodes in a strictly collisionless system (except for the Jeans unstable mode), become part of the true eigenmode spectrum in the limit of zero collisions. Under these conditions, the continuous spectrum of true eigenmodes in a collisionless system, also known as the Case–van Kampen modes, is eliminated. Furthermore, because the background distribution function in a weakly collisional system can exhibit significant deviations from a Maxwellian distribution function over long times, we show that the spectrum of Landau modes can change drastically even in the presence of slight deviations from a Maxwellian, primarily through the appearance of weakly damped modes that may be otherwise heavily damped for a Maxwellian distribution. Our results provide important insights for developing statistical theories to describe thermal fluctuations in a stellar system, which are currently a subject of great interest for N-body simulations as well as observations of gravitational systems.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kamel Ourabah

AbstractDistributions different from those predicted by equilibrium statistical mechanics are commonplace in a number of physical situations, such as plasmas and self-gravitating systems. The best strategy for probing these distributions and unavailing their origins consists in combining theoretical knowledge with experiments, involving both direct and indirect measurements, as those associated with dispersion relations. This paper addresses, in a quite general context, the signature of nonequilibrium distributions in dispersion relations. We consider the very general scenario of distributions corresponding to a superposition of equilibrium distributions, that are well-suited for systems exhibiting only local equilibrium, and discuss the general context of systems obeying the combination of the Schrödinger and Poisson equations, while allowing the Planck’s constant to smoothly go to zero, yielding the classical kinetic regime. Examples of media where this approach is applicable are plasmas, gravitational systems, and optical molasses. We analyse in more depth the case of classical dispersion relations for a pair plasma. We also discuss a possible experimental setup, based on spectroscopic methods, to directly observe these classes of distributions.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Jie Ren

Abstract We analytically study phase transitions of holographic charged Rényi entropies in two gravitational systems dual to the $$ \mathcal{N} $$ N = 4 super-Yang-Mills theory at finite density and zero temperature. The first system is the Reissner-Nordström-AdS5 black hole, which has finite entropy at zero temperature. The second system is a charged dilatonic black hole in AdS5, which has zero entropy at zero temperature. Hyperbolic black holes are employed to calculate the Rényi entropies with the entangling surface being a sphere. We perturb each system by a charged scalar field, and look for a zero mode signaling the instability of the extremal hyperbolic black hole. Zero modes as well as the leading order of the full retarded Green’s function are analytically solved for both systems, in contrast to previous studies in which only the IR (near horizon) instability was analytically treated.


Author(s):  
Dr. Indrajit Patra, Et. al.

The article endeavors to show how thinking about black holes as some form of hyper-efficient, serial computers could help us in thinking about the more fundamental aspects of space-time itself. Black holes as the most exotic and yet simplest forms of gravitational systems also embody quantum fluctuations that could be manipulated to archive hypercomputation, and even if this approach might not be realistic, yet it is important since it has deep connections with various aspects of quantum gravity, the highly desired unification of quantum mechanics and general relativity. The article describes how thinking about black holes as the most efficient kind of computers in the physical universe also paves the way for developing new ideas about such issues as black hole information paradox, the possibility of emulating the properties of curved space-time with the collective quantum behaviors of certain kind of condensate fluids, ideas of holographic spacetime, gravitational thermodynamics and entropic gravity, the role of quantum entanglements and non-locality in the construction of spacetime, spacetime geometry and the nature of gravitation and dark energy and dark matter, etc. to name a few.


New Astronomy ◽  
2021 ◽  
Vol 84 ◽  
pp. 101546
Author(s):  
Wei Hong Xiong ◽  
Wei Heng Yang ◽  
Xiao Chang Chen ◽  
Ke Rong He ◽  
San Qiu Liu

Universe ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 49
Author(s):  
Andrzej Góźdź ◽  
Włodzimierz Piechocki ◽  
Grzegorz Plewa ◽  
Tomasz Trześniewski

We present the result of our examination of quantum structures called quantum spikes. The classical spikes that are known in gravitational systems, occur in the evolution of the inhomogeneous spacetimes. A different kind of spikes, which we name strange spikes, can be seen in the dynamics of the homogeneous sector of the Belinski–Khalatnikov–Lifshitz scenario. They can be made visible if the so-called inhomogeneous initial data are used. The question to be explored is whether the strange spikes may survive quantization. The answer is in the affirmative. However, this is rather a subtle effect that needs further examination using sophisticated analytical and numerical tools. The spikes seem to be of fundamental importance, both at classical and quantum levels, as they may serve as seeds of real structures in the universe.


2020 ◽  
Vol 65 (12) ◽  
pp. 1056
Author(s):  
B.I. Lev ◽  
A.G. Zagorodny

In most cases, the systems of interacting particles are non-equilibrium. In this review, a new approach based on the application of a non-equilibrium statistical operator is presented, which allows the inhomogeneous distributions of the particles and the temperature to be taken into account. The method uses the saddle-point procedure to find dominant contributions to the partition function of the system and enables all of its thermodynamic parameters to be determined. Probable peculiarities in the behavior of the systems with interaction – such as gravitational systems, systems with Coulombic repulsion, and so forth – under various thermodynamic conditions are predicted. A new approach is proposed to describe non-equilibrium systems in the energy space, which is an extension of the Gibbs approach to macroscopic systems under non-equilibrium conditions. It allows the stationary states and the dynamics of non-equilibrium systems to be described.


Sign in / Sign up

Export Citation Format

Share Document