Energy Conversion Using Nanofi bers for Textile Solar Cells

2013 ◽  
pp. 449-482
2021 ◽  
Author(s):  
Wujun Ma ◽  
Yang Zhang ◽  
Shaowu Pan ◽  
Yanhua Cheng ◽  
Ziyu Shao ◽  
...  

This review summarizes the achievements of fiber-shaped nanogenerators, solar cells, supercapacitors and batteries.


2021 ◽  
Author(s):  
Xianhao Zhao ◽  
Tianyu Tang ◽  
Quan Xie ◽  
like gao ◽  
Limin Lu ◽  
...  

The cesium lead halide perovskites are regarded as effective candidates for light-absorbing materials in solar cells, which have shown excellent performances in experiments such as promising energy conversion efficiency. In...


RSC Advances ◽  
2016 ◽  
Vol 6 (87) ◽  
pp. 83802-83807 ◽  
Author(s):  
Yu Hou ◽  
Shuang Yang ◽  
Chunzhong Li ◽  
Huijun Zhao ◽  
Hua Gui Yang

An energy conversion efficiency of 8.31% is reached by using a cemented photoanode for dye-sensitized solar cells, attaining a 31.1% improvement over the standard Degussa P25 sample.


2021 ◽  
Vol 21 (8) ◽  
pp. 4362-4366
Author(s):  
Ji Yong Hwang ◽  
Chung Wung Bark ◽  
Hyung Wook Choi

The perovskite solar cell is capable of energy conversion in a wide range of wavelengths, from 300 nm to 800 nm, which includes the entire visible region and portions of the ultraviolet and infrared regions. To increase light transmittance of perovskite solar cells and reduce manufacturing cost of perovskite solar cells, soda-lime glass and transparent conducting oxides, such as indium tin oxide and fluorine-doped tin oxide are mainly used as substrates and light-transmitting electrodes, respectively. However, it is evident from the transmittance of soda-lime glass and transparent conductive oxides measured via UV-Vis spectrometry that they absorb all light near and below 310 nm. In this study, a transparent Mn-doped ZnGa2O4 film was fabricated on the incident surface of perovskite solar cells to obtain additional light energy by down-converting 300 nm UV light to 510 nm visible light. We confirmed the improvement of power efficiency by applying a ZnGa2O4:Mn down-conversion layer to perovskite solar cells.


Sign in / Sign up

Export Citation Format

Share Document