A higher order shell element for wave propagation in isotropic shell structures

2013 ◽  
pp. 473-476
Author(s):  
A Żak ◽  
M Krawczuk
2015 ◽  
Vol 12 (02) ◽  
pp. 1550004 ◽  
Author(s):  
N. V. Swamy Naidu ◽  
B. Sateesh

The development of a new four node 24 degree of freedom bilinear degenerated shell element is presented for the analysis of shell structures. The present finite element formulation considers the assumed covariant transverse shear strains to avoid the shear locking problem and the assumed covariant membrane strains, which are separated from covariant in-plane strains, to overcome the membrane locking problem. The formulation also includes the deviation of the normal torsional rotation of the mid surface in the governing equation. This element is free from serious shear and membrane locking problems and undesirable spurious kinematic deformation modes. The element is tested for rigid body modes and distorted edges to meet the patch test requirements. The versatility and accuracy of this new degenerated shell element is demonstrated by solving several numerical examples for thick and thin plates.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
H. A. Khawaja ◽  
T. A. Bertelsen ◽  
R. Andreassen ◽  
M. Moatamedi

The paper gives the study of the response of carbon fiber reinforced polymers (CRFP) quasi-isotropic shell structures under the influence of dynamic loading. The quasi-isotropic CRFP shell specimens are fabricated using Multipreg E720 laminates. These laminates are laid in such a way that shell structure has equal strength and mechanical properties in the two-dimensional (2D) plane and hence can be regarded as quasi-isotropic. In this study, the dynamic loading is generated using shock waves in a shock tube experimental setup. The strain and pressure data is collected from the experiments. Additional tests are carried out using Material Test System (MTS) for both tensile and flexural response of CRFP. Results obtained from experiments are compared with numerical simulations using ANSYS Multiphysics 14.0 finite element method (FEM) package. The numerical simulation and experimental results are found to be in good agreement.


Sign in / Sign up

Export Citation Format

Share Document