Coexistence Issues Between Zigbee And Other Networks

2014 ◽  
pp. 183-230
Author(s):  
Dan Sung ◽  
JoWoon Chong ◽  
Su Kim
Keyword(s):  
2017 ◽  
Vol 121 ◽  
pp. 1-12 ◽  
Author(s):  
Liljana Gavrilovska ◽  
Pero Latkoski ◽  
Vladimir Atanasovski ◽  
Ramjee Prasad ◽  
Albena Mihovska ◽  
...  

2009 ◽  
pp. 1037-1043
Author(s):  
João Henrique Kleinschmidt ◽  
Walter Cunha Borelli

Bluetooth (Bluetooth SIG, 2004) and ZigBee (ZigBee Alliance, 2004) are short-range radio technologies designed for wireless personal area networks (WPANs), where the devices must have low power consumption and require little infrastructure to operate, or none at all. These devices will enable many applications of mobile and pervasive computing. Bluetooth is the IEEE 802.15.1 (2002) standard and focuses on cable replacement for consumer devices and voice applications for medium data rate networks. ZigBee is the IEEE 802.15.4 (2003) standard for low data rate networks for sensors and control devices. The IEEE defines only the physical (PHY) and medium access control (MAC) layers of the standards (Baker, 2005). Both standards have alliances formed by different companies that develop the specifications for the other layers, such as network, link, security, and application. Although designed for different applications, there exists some overlap among these technologies, which are both competitive and complementary. This article makes a comparison of the two standards, addressing the differences, similarities, and coexistence issues. Some research challenges are described, such as quality of service, security, energy-saving methods and protocols for network formation, routing, and scheduling.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Woon-Young Yeo ◽  
Sung Ho Moon ◽  
Jae-Hoon Kim

TD-LTE, one of the two duplexing modes in LTE, operates in unpaired spectrum and has the advantages of TDD-based technologies. It is expected that TD-LTE will be more rapidly deployed in near future and most of WiMax operators will upgrade their networks to TD-LTE gradually. Before completely upgrading to TD-LTE, WiMax may coexist with TD-LTE in an adjacent frequency band. In addition, multiple TD-LTE operators may deploy their networks in adjacent bands. When more than one TDD network operates in adjacent frequency bands, severe interference may happen due to adjacent channel interference (ACI) and unsynchronized operations. In this paper, coexistence issues between TD-LTE and other systems are analyzed and coexistence requirements are provided. This paper has three research objectives. First, frame synchronization between TD-LTE and WiMax is discussed by investigating possible combinations of TD-LTE and WiMax configurations. Second, an uplink scheduling algorithm is proposed to utilize a leakage pattern of ACI in synchronized operations. Third, minimum requirements for coexistence in unsynchronized operations are analyzed by introducing a concept of adjacent-channel coupling loss. From the analysis and simulation results, we can see that coexistence of TD-LTE with other TDD systems is feasible if the two networks are synchronized. For the unsynchronized case, some special cell-site engineering techniques may be required to reduce the ACI.


Author(s):  
J. Kleinschmidt

Bluetooth (Bluetooth SIG, 2004) and ZigBee (ZigBee Alliance, 2004) are short-range radio technologies designed for wireless personal area networks (WPANs), where the devices must have low power consumption and require little infrastructure to operate, or none at all. These devices will enable many applications of mobile and pervasive computing. Bluetooth is the IEEE 802.15.1 (2002) standard and focuses on cable replacement for consumer devices and voice applications for medium data rate networks. ZigBee is the IEEE 802.15.4 (2003) standard for low data rate networks for sensors and control devices. The IEEE defines only the physical (PHY) and medium access control (MAC) layers of the standards (Baker, 2005). Both standards have alliances formed by different companies that develop the specifications for the other layers, such as network, link, security, and application. Although designed for different applications, there exists some overlap among these technologies, which are both competitive and complementary. This article makes a comparison of the two standards, addressing the differences, similarities, and coexistence issues. Some research challenges are described, such as quality of service, security, energy-saving methods and protocols for network formation, routing, and scheduling.


2016 ◽  
Vol 54 (12) ◽  
pp. 116-123 ◽  
Author(s):  
Cristina Cano ◽  
David Lopez-Perez ◽  
Holger Claussen ◽  
Douglas J. Leith

Sign in / Sign up

Export Citation Format

Share Document