scholarly journals Collaborative environment for energy-efficient buildings at an early design stage

Author(s):  
M Bassanino ◽  
T Fernando ◽  
J Masior ◽  
M Kadolsky ◽  
R Scherer ◽  
...  
Buildings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 651
Author(s):  
Seung-Hyo Baek ◽  
Byung-Hee Lee ◽  
Myoung-Souk Yeo

Renewable energy system (RES) is an environmentally friendly source of energy. A suitable design of RES is crucial to implement an energy-efficient building such as a zero energy building (ZEB). The significance of appropriate decision-making for the successful implementation of energy-efficient buildings has been increasing. In addition, the identification of the sizing of RES is equally important for architects or HVAC engineers. In this study, a novel sizing method for a single U-tube ground heat exchanger (GHE) is proposed. A transient thermal analysis for a single GHE is performed by considering ground temperature recovery effect as well as other major design parameters. The results are used to design the proposed sizing method and were verified by transient simulations for different design cases. Additionally, it was observed that the coefficient of variation of root mean square error (CV(RMSE)) for all ten design cases was lower than 15% during the heating and cooling seasons. Thus, the proposed design method can be used for sizing a GHE in the early design stage.


Author(s):  
Lukman Irshad ◽  
Salman Ahmed ◽  
Onan Demirel ◽  
Irem Y. Tumer

Detection of potential failures and human error and their propagation over time at an early design stage will help prevent system failures and adverse accidents. Hence, there is a need for a failure analysis technique that will assess potential functional/component failures, human errors, and how they propagate to affect the system overall. Prior work has introduced FFIP (Functional Failure Identification and Propagation), which considers both human error and mechanical failures and their propagation at a system level at early design stages. However, it fails to consider the specific human actions (expected or unexpected) that contributed towards the human error. In this paper, we propose a method to expand FFIP to include human action/error propagation during failure analysis so a designer can address the human errors using human factors engineering principals at early design stages. To explore the capabilities of the proposed method, it is applied to a hold-up tank example and the results are coupled with Digital Human Modeling to demonstrate how designers can use these tools to make better design decisions before any design commitments are made.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Wenting Liu ◽  
Qingliang Zeng ◽  
Lirong Wan ◽  
Chenglong Wang

It is important to allocate a reliability goal for the hydraulic excavator in the early design stage of the new system. There are some effective methods for setting reliability target and allocating its constituent subsystems in the field of aerospace, electric, vehicles, railways, or chemical system, but until now there is no effective method for the hydraulic excavator or engineering machinery. In this paper, an approach is proposed which combines with the conventional reliability allocation methods for setting reliability goals and allocating the subsystem and parts useful in the early design stage of the hydraulic excavator newly developed. It includes Weibull analysis method, modified Aeronautical Radio Inc. (ARINC) method, and modified systematic failure mode and effect analysis (FMEA) method. After completing reliability allocation, it is necessary to organize the designers and experts to evaluate the rationality of the reliability target through FEMA analysis considering feasibility of the improvement technically for the part which was new developed or had fault in its predecessor. The proposed approach provides an easy methodology for allocate a practical reliability goal for the hydraulic excavator capturing the real life behavior of the product. It proposes a simple and unique way to capture the improvement of the subsystems or components of the hydraulic excavator. The proposed approach could be extended to consider other construction machinery equipment and have practicality value to research excellent mechanical product.


Sign in / Sign up

Export Citation Format

Share Document