AHP model applied to study on the education mode of ideological and political course in universities

Author(s):  
L Jiang
Keyword(s):  
Author(s):  
S. Raza Wasi ◽  
J. Darren Bender

An interesting, potentially useful, and fully replicable application of a spatially enabled decision model is presented for pipeline route optimization. This paper models the pipeline route optimization problem as a function of engineering and environmental design criteria. The engineering requirements mostly deal with capital, operational and maintenance costs, whereas environmental considerations ensure preservation of nature, natural resources and social integration. Typically, pipelines are routed in straight lines, to the extent possible, to minimize the capital construction costs. In contrast, longer pipelines and relatively higher costs may occur when environmental and social considerations are part of the design criteria. Similarly, much longer pipelines are less attractive in terms of capital costs and the environmental hazard associated with longer construction area. The pipeline route optimization problem is potentially a complex decision that is most often undertaken in an unstructured, qualitative fashion based on human experience and judgement. However, quantitative methods such as spatial analytical techniques, particularly the least-cost path algorithms, have greatly facilitated automation of the pipeline routing process. In the past several interesting studies have been conducted using quantitative spatial analytical tools for finding the best pipeline route or using non-spatial decision making tools to evaluate several alternates derived through conventional route reconnaissance methods. Most of these studies (that the authors are familiar with) have concentrated on integrating multiple sources of spatial data and performing quantitative least-cost path analysis or have attempted to make use of non-spatial decision making tools to select the best route. In this paper, the authors present a new framework that incorporates quantitative spatial analytical tools with an Analytical Hierarchical Process (AHP) model to provide a loosely integrated but efficient spatial Decision Support System (DSS). Specifically, the goal is to introduce a fully replicable spatial DSS that processes both quantitative and qualitative information, balances between lowest-cost and lowest-impact routes. The model presented in this paper is implemented in a four step process: first, integration of multiple source data that provide basis for engineering and environmental design criteria; second, creation of several alternate routes; third, building a comprehensive decision matrix using spatial analysis techniques; and fourth, testing the alternative and opinions of the stakeholder groups on imperatives of AHP model to simplify the route optimization decision. The final output of the model is then used to carry out sensitivity analysis, quantify the risk, generate “several what and if scenarios” and test stability of the route optimization decision.


2021 ◽  
Vol 13 (12) ◽  
pp. 6949
Author(s):  
Gang Lin ◽  
Shaoli Wang ◽  
Conghua Lin ◽  
Linshan Bu ◽  
Honglei Xu

To mitigate car traffic problems, the United Nations Human Settlements Programme (UN-Habitat) issued a document that provides guidelines for sustainable development and the promotion of public transport. The efficiency of the policies and strategies needs to be evaluated to improve the performance of public transportation networks. To assess the performance of a public transport network, it is first necessary to select evaluation criteria. Based on existing indicators, this research proposes a public transport criteria matrix that includes the basic public transport infrastructure level, public transport service level, economic benefit level, and sustainable development level. A public transport criteria matrix AHP model is established to assess the performance of public transport networks. The established model selects appropriate evaluation criteria based on existing performance standards. It is applied to study the Stonnington, Bayswater, and Cockburn public transport network, representing a series of land use and transport policy backgrounds. The local public transport authorities can apply the established transport criteria matrix AHP model to monitor the performance of a public transport network and provide guidance for its improvement.


Author(s):  
Muhammad Fawad ◽  
Farid Ullah ◽  
Muhammad Irshad ◽  
Wisal Shah ◽  
Qaisar Mahmood ◽  
...  

Processes ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 252 ◽  
Author(s):  
Chia-Nan Wang ◽  
Ying-Fang Huang ◽  
I-Fang Cheng ◽  
Van Nguyen

Suppliers are extremely important in business operations. The supplier ensures the supply of materials, raw materials, commodities, etc. in sufficient quantity, quality, stability, and accuracy to meet the requirements of production and business with low costs and on-time deliveries. Therefore, selecting and managing good suppliers is a prerequisite for organizing the production of quality products as desired, according to the schedule, and with reasonable prices and competitiveness in the market. It is also important to gain the support of suppliers in order to continue to improve and achieve more as a business. The evaluation and selection of a supplier is a Multi-Criteria Decision-Making (MCDM) issue, in which the decision-maker is faced with both qualitative and quantitative factors. In this research, the authors propose an MCDM model using a hybrid of Supply Chain Operations Reference metrics (SCOR metrics), the Analytic Hierarchy Process (AHP) model, and the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) approach for supplier evaluation and selection in the gas and oil industry. Using literature reviews on SCOR metrics, all criteria that impact supplier selection are defined in the first stage, the AHP model is applied to determine the weight of each factor in the second stage, and the optimal supplier is presented in final stage using the TOPSIS model. As a result, Decision-Making Unit 5 (DMU-05) is found to be the best supplier for the gas and oil industry in this research. The contribution of this work is to propose a new hybrid MCDM model for supplier selection in the gas and oil industry. This research also introduces a useful tool for supplier selection in other industries.


Sign in / Sign up

Export Citation Format

Share Document