Study on the crack detection above buildings using infrared thermal imaging technology

2015 ◽  
pp. 1447-1450
Author(s):  
Jingjing Huang ◽  
Cheng Xing
Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yibo Ai ◽  
Yingjie Zhang ◽  
Xingzhao Cao ◽  
Weidong Zhang

Ultrasonic excitation has been widely used in the detection of microcracks on metal surfaces, but there are problems such as poor excitation effect of ultrasonic pulse, long time to reach the best excitation, and difficult to find microcracks. In this paper, an adaptive ultrasonic pulse excitation device and infrared thermal imaging technology have been combined, as well as their control method, to solve the problem. The adaptive ultrasonic pulse excitation device adds intelligent modules to realize automatic adjustment of detection parameters, which can quickly obtain reliable excitation; the multidegree-of-freedom base realizes the three-dimensional direction change of the ultrasonic gun to adapt to different excitation occasions. When the appropriate ultrasonic excitation makes microcracks in the resonance state, the microcracks can be frictionated, which produce heat rise with the temperature. Then, the microcrack defect can be detected by the infrared thermal instrument through the different surface temperatures with imaging recognition method. Our detection experiments of the titanium alloy plates and the aluminum alloy profiles of marine engineering show that the method can get reliable detection parameters in a short time and measure the crack length effectively. It can be used in many aspects such as crack detection in mechanical structures or complex equipment operating conditions and industrial production processes.


2019 ◽  
Vol 23 (3 Part A) ◽  
pp. 1473-1478
Author(s):  
Yanying Yin ◽  
Chen Li ◽  
Ge Song

Diabetic microangiopathy is an important cause of morbidity and mortality of diabetes foot ulcers. Its early detection is very important for early intervention avoiding severe clinical symptoms. In this article, theoretical study on a pulsed infrared thermal imaging technology detecting early diabetic microangiopathy in lower extremity was carried out. The working principle of pulsed infrared thermal imaging technology was described and the 3-D thermal conduction model for atherosclerotic plaque in microvessel of distal lower extremity using pulsed infrared thermal imaging technology was established and calculated. The effect of atherosclerotic plaque geometry size including length and thickness to the measurement parameter was studied, and the influence law has been got, which can provide a theoretical basis for the diagnosis of diabetic microangiopathy using pulsed infrared thermal imaging technology.


2021 ◽  
Author(s):  
Yi Feng Liu ◽  
Hsi-Chao Chen ◽  
Ying-Sheng Lin ◽  
Bo-Wei Lai ◽  
Min-Yi Jiang ◽  
...  

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 182060-182077 ◽  
Author(s):  
Jun Yang ◽  
Wei Wang ◽  
Guang Lin ◽  
Qing Li ◽  
Yeqing Sun ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Jin-xia Ni ◽  
Si-hua Gao ◽  
Yu-hang Li ◽  
Shi-lei Ma ◽  
Tian Tian ◽  
...  

Zheng classification study based on infrared thermal imaging technology has not been reported before. To detect the relative temperature of viscera and bowels of different syndromes patients with pulmonary disease and to summarize the characteristics of different Zheng classifications, the infrared thermal imaging technology was used in the clinical trial. The results showed that the infrared thermal images characteristics of different Zheng classifications of pulmonary disease were distinctly different. The influence on viscera and bowels was deeper in phlegm-heat obstructing lung syndrome group than in cold-phlegm obstructing lung syndrome group. It is helpful to diagnose Zheng classification and to improve the diagnosis rate by analyzing the infrared thermal images of patients. The application of infrared thermal imaging technology provided objective measures for medical diagnosis and treatment in the field of Zheng studies and provided a new methodology for Zheng classification.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6717
Author(s):  
Shu-Ling Huang ◽  
Chi-Ping Li ◽  
Chia-Chin Chang ◽  
Chen-Chen Tseng ◽  
Ming-Wei Wang ◽  
...  

In this study, a new monitoring method was developed, titled infrared thermal imaging technology, which can effectively evaluate the thermal effect of the charge-discharge test in the vanadium/iodine redox flow battery (V/I RFB). The results show that the all-vanadium redox flow battery (all-V RFB) has a greater molar reaction Gibbs free energy change than that of the V/I RFB, representing a large thermal effect of the all-V RFB than the V/I RFB. The charge-discharge parameters, flow rate and current density, are important factors for inducing the thermal effect, because of the concentration polarization and the ohmic resistor. The new membrane (HS-SO3H) shows a high ion exchange capacity and a good ions crossover inhibitory for the V/I RFB system, and has a high coulomb efficiency that reaches 96%. The voltage efficiency was enhanced from 61% to 86% using the C-TiO2-Pd composite electrode as a cathode with the serpentine-type flow field for the V/I RFB. By adopting the high-resolution images of an infrared thermal imaging technology with the function of the temperature profile data, it is useful to evaluate the key components’ performance of the V/I RFB, and is a favorable candidate in the developing of the redox flow battery system.


2021 ◽  
Vol 237 ◽  
pp. 04005
Author(s):  
Baoqing Zhang

In this paper, the representative buildings built in different periods of the village are observed and their types and conditions are recorded according to the phenomenon that the defects and diseases of the local historical settlements are increasingly serious due to blind transformation and excessive commerce in the protection work of moon village in Mulei County, Xinjiang. Then, the main building diseases of moon village are studied based on the theory of architectural pathology and GIS platform The coupling relationship with local microclimate, and the degree of disease of the village houses are classified into three categories: light, medium and severe diseases. Based on the analysis of the change of macro climate and local microclimate conditions in the South and north of the East Tianshan Mountains, it is concluded that the main reason for the defect is the damp disease. The infrared thermal imaging technology is introduced to analyze the damp disease in the settlement, and the preliminary judgment method of the damp disease is obtained, which should be paid attention to in the future protection work.


Sign in / Sign up

Export Citation Format

Share Document