Effective Transport Properties of Porous Media by Modeling

2015 ◽  
pp. 357-390
Author(s):  
Moran Wang
2011 ◽  
Vol 134 (1) ◽  
Author(s):  
Sophia Haussener ◽  
Iwan Jerjen ◽  
Peter Wyss ◽  
Aldo Steinfeld

The effective heat and mass transport properties of a porous packed bed of particles undergoing a high-temperature solid–gas thermochemical transformation are determined. The exact 3D geometry of the reacting porous media is obtained by high-resolution computed tomography. Finite volume techniques are applied to solve the governing conservation equations at the pore-level scale and to determine the effective transport properties as a function of the reaction extent, namely, the convective heat transfer coefficient, permeability, Dupuit–Forchheimer coefficient, tortuosity, and residence time distributions. These exhibit strong dependence on the bed morphological properties (e.g., porosity, specific surface area, particle size) and, consequently, vary with time as the reaction progresses.


Author(s):  
Sophia Haussener ◽  
Iwan Jerjen ◽  
Peter Wyss ◽  
Aldo Steinfeld

The effective heat and mass transport properties of a porous packed bed of particles undergoing a high-temperature solid-gas thermochemical transformation are determined. The exact 3D geometry of the reacting porous media is obtained by high-resolution computer tomography. Finite volume techniques are applied to solve the governing conservation equations at the pore-level scale and to determine the effective transport properties as a function of the reaction extent, namely: the convective heat transfer coefficient, permeability, Dupuit-Forchheimer coefficient, tortuosity and residence time distributions. These exhibit strong dependence on the bed morphological properties (e.g. porosity, specific surface area, particle size) and, consequently, vary with time as the reaction progresses.


2016 ◽  
Author(s):  
Bahador Najafiazar ◽  
Juan Yang ◽  
Christian Rone Simon ◽  
Fuad Karimov ◽  
Ole Torsæter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document