Resistance and propulsion Hydrodynamic performance of an autonomous underwater vehicle with a swivel tail

2021 ◽  
Author(s):  
Weigang Huang ◽  
Donglei Zhang ◽  
Jiawei Yu ◽  
Tao He ◽  
Xianzhou Wang

Abstract AUV (Autonomous Underwater Vehicle) recovery is considerably influenced by the nearby flow field and simulations of AUV in different motion paths in the wake of a submarine with a propeller are presented in this paper. A commercial CFD solver STAR CCM+ has been used to research the motion and flow characteristics of AUV, which using the advanced computational continuum mechanics algorithms. The DARPA (Defense Advanced Research Projects Agency) SUBOFF Submarine (L1 = 4.356m) propelled with INSEAN (Italian Ship Model Basin) E1619 propeller is used in this study, and the self-propulsion characteristics of the propeller at an incoming flow velocity of 2.75m/s are obtained through numerical simulation and results are compared with the available experimental data to prove the accuracy of the chosen investigation methodology. A grid/time-step convergence test is performed for verification study. AUV (L2 = 0.4356m) is a smaller-scale SUBOFF without a sail, which approaches the submarine in different motion paths in the submarine wake at a relative speed combined with the dynamic overlapping grid technology. The hydrodynamic performance of the AUV when approaching the submarine and the velocity distribution of the surrounding flow field are analyzed, which provides a useful reference for underwater recovery of the AUV.


2011 ◽  
Vol 45 (4) ◽  
pp. 99-109 ◽  
Author(s):  
Keith W. Moored ◽  
Frank E. Fish ◽  
Trevor H. Kemp ◽  
Hilary Bart-Smith

AbstractFor millions of years, aquatic species have utilized the principles of unsteady hydrodynamics for propulsion and maneuvering. They have evolved high-endurance swimming that can outperform current underwater vehicle technology in the areas of stealth, maneuverability and control authority. Batoid fishes, including the manta ray, Manta birostris, the cownose ray, Rhinoptera bonasus, and the Atlantic stingray, Dasyatis sabina, have been identified as a high-performing species due to their ability to migrate long distances, maneuver in spaces the size of their tip-to-tip wing span, produce enough thrust to leap out of the water, populate many underwater regions, and attain sustained swimming speeds of 2.8 m/s with low flapping/undulating frequencies. These characteristics make batoid fishes an ideal platform to emulate in the design of a bio-inspired autonomous underwater vehicle. The enlarged pectoral fins of each ray undergoes complex motions that couple spanwise curvature with a chordwise traveling wave to produce thrust and to maneuver. Researchers are investigating these amazing species to understand the biological principles for locomotion. The continuum of swimming motions—from undulatory to oscillatory—demonstrates the range of capabilities, environments, and behaviors exhibited by these fishes. Direct comparisons between observed swimming motions and the underlying cartilage structure of the pectoral fin have been made. A simple yet powerful analytical model to describe the swimming motions of batoid fishes has been developed and is being used to quantify their hydrodynamic performance. This model is also being used as the design target for artificial pectoral fin design. Various strategies have been employed to replicate pectoral fin motion. Active tensegrity structures, electro-active polymers, and fluid muscles are three structure/actuator approaches that have successfully demonstrated pectoral-fin-like motions. This paper explores these recent studies to understand the relationship between form and swimming function of batoid fishes and describes attempts to emulate their abilities in the next generation of bio-inspired underwater vehicles.


2009 ◽  
Author(s):  
Giacomo Marani ◽  
Junku Yuh ◽  
Song K. Choi ◽  
Son-Cheol Yu ◽  
Luca Gambella ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document