Life Cycle Management for main generators and exciters at nuclear power plants

Author(s):  
C Yang
Author(s):  
Steve Yang ◽  
Jun Ding ◽  
Huifang Miao ◽  
Jianxiang Zheng

All 1000 MW nuclear power plants currently in construction or projected to-be-built in China will use the digital instrumentation and control (I&C) systems. Safety and reliability are the ultimate concern for the digital I&C systems. To obtain high confidence in the safety of digital I&C systems, rigorous software verification and validation (V&V) life-cycle methodologies are necessary. The V&V life-cycle process ensures that the requirements of the system and software are correct, complete, and traceable; that the requirements at the end of each life-cycle phase fulfill the requirements imposed by the previous phase; and the final product meets the user-specified requirements. The V&V process is best illustrated via the so-called V-model. This paper describes the V-model in detail by some examples. Through the examples demonstration, it is shown that the process detailed in the V-model is consistent with the IEEE Std 1012-1998, which is endorsed by the US Regulatory Guide 1.168-2004. The examples show that the V-model process detailed in this paper provides an effective V&V approach for digital I&C systems used in nuclear power plants. Additionally, in order to obtain a qualitative mathematical description of the V-model, we study its topological structure in graph theory. This study confirms the rationality of the V-model. Finally, the V&V approach affording protection against common-cause failure from design deficiencies, and manufacturing errors is explored. We conclude that rigorous V&V activities using the V-model are creditable in reducing the risk of common-cause failures.


Author(s):  
T. Cheng ◽  
M. D. Pandey ◽  
W. C. Xie

Degradation of systems and components operating in harsh environment has an adverse effect on safety and reliability of nuclear power plants. Condition-based maintenance (CBM) programs are used to preventively maintain degrading components, which minimize the risk of failure. However, maintenance programs can be costly due to frequent inspection, increased outage time, and redundant maintenance of functional components. The optimization of maintenance programs over the life cycle of systems is an important issue for the plant managers. The paper presents an advanced model for the evaluation of life cycle cost of degrading components in the nuclear plants, which can be used for the maintenance optimization. The proposed model is based on the more precise finite time horizon formulation, instead of using asymptotic formulae that may lead to inaccurate results in practical settings.


Sign in / Sign up

Export Citation Format

Share Document