Harmonization of International Standards and Chinese National Standards for Developing Life Cycle RAMS Management Guideline for Nuclear Power Plants in China

Author(s):  
Renyou Zhang ◽  
Zhizhong Li
Author(s):  
Hoonseok Byun ◽  
Seogchan Yoon ◽  
Jonghae Kim ◽  
Samchul Lee

Korea Electric Power Industry Code (KEPIC), a set of integrated standards applicable to the design, construction and operation of electric power facilities including nuclear power plants, has been developed on the basis of referring to the prevailing U.S. codes and standards which had been applied to the electric power facilities in Korea. Being the developing and managing organization of KEPIC, Korea Electric Association (KEA) published its first edition in 1995, the second in 2000 and the latest in 2005. KEPIC has been applied to the construction of nuclear power plants since 1997 in Korea. Along with the effectuation of the Agreement on Technical Barriers to Trade (TBT) in 1995, the international trend related to codes and standards is changing rapidly. KEA is, therefore, making its utmost efforts so as for KEPIC to keep abreast with the changing environment in international arena. KEA notified ISO/IEC Information Centre of its acceptance of the Code of Good Practice in the Agreement on TBT. Also the 2005 edition of KEPIC was published to be retrofitted according to the ISO/IEC Guide 21-Adoption of International Standards as regional or national standards. On the other hand, KEA is continuously performing to study on the improvement of KEPIC requirements. Such KEA’s efforts will help KEPIC correspond with international standards such as ISO/IEC standards, and internationally recognized standards such as ASME codes and standards. Furthermore KEA will expedite the publication of the bilingual edition of KEPIC at 2010 as per the globalization plan and KEA hopes that KEPIC can assist Korea Electric Power Corporation (KEPCO) and Korea Hydro & Nuclear Power Co., Ltd. (KHNP) in exportation of Korea Standard Nuclear Power Plant (KSNP) such as OPR-1000 and APR-1400 by the bilingual edition.


Author(s):  
Sangmyeon Ahn ◽  
Jungjoon Lee ◽  
Chanwoo Jeong ◽  
Kyungwoo Choi

We are having 23 units of nuclear power plants in operation and 5 units of nuclear power plants under construction in Korea as of September 2012. However, we don’t have any experience on shutdown permanently and decommissioning of nuclear power plants. There are only two research reactors being decommissioned since 1997. It is realized that improvement of the regulatory framework for decommissioning of nuclear facilities has been emphasized constantly from the point of view of IAEA’s safety standards. It is also known that IAEA will prepare the safety requirement on decommissioning of facilities; its title is the Safe Decommissioning of Facilities, General Safety Requirement Part 6. According to the result of IAEA’s Integrated Regulatory Review Service (IRRS) mission to Korea in 2011, it was recommended that the regulatory framework should require decommissioning plans for nuclear installations to be constructed and operated and these plans should be updated periodically. In addition, after the Fukushima nuclear disaster in Japan in March of 2011, preparedness for early decommissioning caused by an unexpected severe accident became important issues and concerns. In this respect, it is acknowledged that the regulatory framework for decommissioning of nuclear facilities in Korea need to be improved. First of all, we focus on identifying the current status and relevant issues of regulatory framework for decommissioning of nuclear power plants compared to the IAEA’s safety standards in order to achieve our goal. And then the plan is established for improvement of regulatory framework for decommissioning of nuclear power plants in Korea. It is expected that if the things will go forward as planned, the revised regulatory framework for decommissioning could enhance the safety regime on the decommissioning of nuclear power plants in Korea in light of international standards.


Author(s):  
Steve Yang ◽  
Jun Ding ◽  
Huifang Miao ◽  
Jianxiang Zheng

All 1000 MW nuclear power plants currently in construction or projected to-be-built in China will use the digital instrumentation and control (I&C) systems. Safety and reliability are the ultimate concern for the digital I&C systems. To obtain high confidence in the safety of digital I&C systems, rigorous software verification and validation (V&V) life-cycle methodologies are necessary. The V&V life-cycle process ensures that the requirements of the system and software are correct, complete, and traceable; that the requirements at the end of each life-cycle phase fulfill the requirements imposed by the previous phase; and the final product meets the user-specified requirements. The V&V process is best illustrated via the so-called V-model. This paper describes the V-model in detail by some examples. Through the examples demonstration, it is shown that the process detailed in the V-model is consistent with the IEEE Std 1012-1998, which is endorsed by the US Regulatory Guide 1.168-2004. The examples show that the V-model process detailed in this paper provides an effective V&V approach for digital I&C systems used in nuclear power plants. Additionally, in order to obtain a qualitative mathematical description of the V-model, we study its topological structure in graph theory. This study confirms the rationality of the V-model. Finally, the V&V approach affording protection against common-cause failure from design deficiencies, and manufacturing errors is explored. We conclude that rigorous V&V activities using the V-model are creditable in reducing the risk of common-cause failures.


2019 ◽  
Vol 20 (2) ◽  
pp. 111 ◽  
Author(s):  
Dharu Dewi ◽  
Sriyana Sriyana

SPESIFIKASI, KODE DAN STANDAR BAJA NASIONAL DAN POTENSINYA UNTUK MENDUKUNG PROGRAM PLTN TIPE LWR DI INDONESIA. Spesifikasi, kode dan standar baja nasional sangat penting diidentifkasi agar dapat dicocokkan atau dibandingkan  dengan spesifikasi, kode dan standar internasional untuk komponen PLTN sehingga industri baja diharapkan dapat berpartisipasi dalam pembangunan Pembangkit Listrik Tenaga Nuklir (PLTN). Spesifikasi kode dan standar  baja mengacu pada ASTM, ASME, AISC dan lain - lain. Tujuan studi ini adalah mengidentifikasi  spesifikasi, kode dan standar baja yang dimiliki industri nasional dan kemudian dicocokkan dengan spesifikasi, kode dan standar baja sesuai standar internasional untuk PLTN. Metodologi penelitian adalah kajian literatur, pengiriman kuesioner, survei dan kunjungan teknis ke industri baja. Disimpulkan bahwa baja struktur pada dasarnya memenuhi persyaratan untuk konstruksi PLTN.Kata kunci: spesifikasi, kode, standar, baja, industriSPECIFICATION, CODE AND STANDARD OF NATIONAL STEEL AND THE POTENCY TO SUPPORT THE NUCLEAR POWER PROGRAMME OF LWR TYPE IN INDONESIA. Specification, codes and standards are important to identify in order to be matched or compared to international specifications, codes and standards for NPP components so that the steel industry is expected to participate in the construction of Nuclear Power Plants (NPPs). The specifications, code and standards of steel refer to ASTM, ASME, AISC and others. The purpose of this study is to identify specifications, codes and steel standards owned by national industries and then compared it to international standards for nuclear power plants. The research methodology is literature review, questionnaire submission, surveys and technical visits to the steel industry. It was concluded that the structural steel basically meets the requirements for NPP construction.Keywords: specification, code, standard, steel, industry


2014 ◽  
Vol 136 (05) ◽  
pp. 36-41
Author(s):  
Sidney Bernsen ◽  
Bryan Erler ◽  
Dana K. Morton ◽  
Owen Hedden

This article elaborates the evolution of code and standards for nuclear power plants. In the 1950s, need was felt for a revised set of design and fabrication rules to facilitate the development of safe, economically competitive water-cooled reactors contained in pressure vessels. These rules were codified in the first edition of the ASME Boiler and Pressure Vessel Code Section III, which was completed in 1963 and published in 1964. From the outset, both regulators and industry realized that the best way to develop many of the needed rules for the design, construction, and operation of nuclear facilities was the national standards consensus process. This process, followed by the American National Standards Institute and other recognized standards-issuing bodies such as ASME, brings together the expertise of individuals from government, industry, academia, and other stakeholders. In the years following the first publication of Section III, the coverage of the Code expanded to incorporate piping requirements, pressure-retaining components for pumps and valves, equipment and piping supports, reactor vessel internal structures, and other features of nuclear power plants.


Sign in / Sign up

Export Citation Format

Share Document