Analysis of superposition of wave load and wind load on offshore wind turbine based on load simulation

2015 ◽  
pp. 255-260
Author(s):  
Wei Gong

Renewable energy provides a solution for complex current and future social and environmental problems whereas offshore industry has a large potential for providing renewable energy for future. Currently, offshore technology making use of wind for energy generation purpose becomes a hot spot with highly advanced research and development going on on one side and complex and critical problems present and difficult to solve on the other. This paper is trying to study problems related to the quantification of the hydrodynamic and aerodynamic loads for the design of offshore wind turbine support structures in the offshore wind farm. Both the hydrodynamic and aerodynamic conditions in the offshore site are extremely complex resulting in the difficulty of reasonable determination for the external loads on the wind turbine support structures. However, due to the increasing global demands for future energy solution, the design, analysis and optimization of offshore wind turbine is nevertheless an important issue. The paper first gives an introduction of the offshore wind farm and the complexity of the offshore environment. Wave load is explored with introduction of existing wave load models, comparison of their characteristics while the focus is placed on the nonlinear wave load by means of the Stokes higher order wave theory. Properties of a single regular wave based on methods of linear wave theory and Stokes higher order wave theory are compared which lead to differences in the results of wave load models when these two different methods are used. Wind load model is introduced briefly, followed by the introduction of current methods for determination or approximation of combined wave and wind load and also recommendations for practice. Park effect of the wind load and wave load is also introduced at limited depth in the latter stage as a direction for future research. Conclusion and recommendations based on all the above are therefore given at the last section of the paper.


2016 ◽  
Vol 158 ◽  
pp. 122-138 ◽  
Author(s):  
M. Feyzollahzadeh ◽  
M.J. Mahmoodi ◽  
S.M. Yadavar-Nikravesh ◽  
J. Jamali

Author(s):  
Yougang Tang ◽  
Jun Hu ◽  
Liqin Liu

The wind resources for ocean power generation are mostly distributed in sea areas with the distance of 5–50km from coastline, whose water depth are generally over 20m. To improve ocean power output and economic benefit of offshore wind farm, it is necessary to choose floating foundation for offshore wind turbine. According to the basic data of a 600kW wind turbine with a horizontal shaft, the tower, semi-submersible foundation and mooring system are designed in the 60-meter-deep sea area. Precise finite element models of the floating wind turbine system are established, including mooring lines, floating foundation, tower and wind turbine. Dynamic responses for the floating foundation of offshore wind turbine are investigated under wave load in frequency domain.


Author(s):  
Andreas Manjock ◽  
Markus S. Starr

Abstract This paper summarizes the results of the implementation and verification of a hydro-aero-servo-elastic load simulation model for a self-aligning floating offshore wind turbine (FOWT) combined with a structural analysis methodology of this FOWT structure. The main focus is a comparison of a rigid and a flexible support structure representation in the load simulation. This investigation is part of the multiparty project for the ‘Hydrodynamic and Structural Optimization of a Semi-submersible Offshore Wind Turbine’ (HyStOH), joining partners from science and industry and financially supported by the German Ministry of Economics Affairs and Energy, BMWi (Bundesministerium für Wirtschaft und Energie).


2013 ◽  
Vol 275-277 ◽  
pp. 852-855 ◽  
Author(s):  
Zhuang Le Yao ◽  
Chao He Chen ◽  
Yuan Ming Chen

In this paper, the overall finite element model is established, to analyze the small-sized floating foundation of a tri-floater and to make a local optimization on the stress concentration area. The transfer functions and the response spectrums of wave load and motion of floating wind turbine system are calculated by AQWA. Besides the concept of the floating foundation group is put forward in this paper. It is small in structure, easy to assemble, and it can be developed for any power of wind field.This concept has a certain reference value for the development of offshore wind industry in China.


2013 ◽  
Vol 454 ◽  
pp. 7-14
Author(s):  
Bin Wang ◽  
Ying Li ◽  
Jin Ping Luo ◽  
Dan Shan Wang ◽  
Sheng Xiao Zhao

Based on the probability distributions of wind direction and wave direction, the fatigue load is applied to the offshore wind turbine structure according to the actual environmental loading direction. The deterministic fatigue damage due to the wind load and the spectrum fatigue damage due to the wave load are calculated, respectively. Then, the total fatigue damage of the offshore wind turbine structure is obtained by the linear superposition. Compared with the results that the fatigue damage of the offshore wind turbine structure is computed under fatigue loads exerted in single direction, the results of omnidirectional fatigue analysis are more reasonable.


2020 ◽  
Vol 217 ◽  
pp. 108155
Author(s):  
Guangwei Cao ◽  
Zhixiong Chen ◽  
Chenglong Wang ◽  
Xuanming Ding

2011 ◽  
Vol 121-126 ◽  
pp. 206-212
Author(s):  
Cai Yun Ji ◽  
Long Biao Zhu ◽  
Zhi Song Zhu

With the rapid development of wind power industry and the increasing tension of land resources, WTGS(Wind turbine generating set) changes from Onshore wind machine to offshore wind machine. Because the offshore wind turbine works in the complex environment, it is a higher challenge for tower security. This paper focuses on the load analysis of 2.5MW wind turbine tower, in which a segment solution is applied. Wind load is solved in the superior segment of tower. In the lower segment, the coupling factor of wind and wave is taken into account. Irregular waves are simulated on the basis of the linear wave theory, and then wave load is derived. Accordingly, loads on the tower are calculated by using MATLAB software, and the load spectrum of every node is drawn, which lays a foundation for the dynamic response analysis and fatigue life analysis of tower.


Sign in / Sign up

Export Citation Format

Share Document