Spring hydrograph recession: A brief review focused on karst aquifers

Author(s):  
Francesco Fiorillo
2005 ◽  
Vol 303 (1-4) ◽  
pp. 152-164 ◽  
Author(s):  
Attila Kovács ◽  
Pierre Perrochet ◽  
László Király ◽  
Pierre-Yves Jeannin

2015 ◽  
Vol 35 ◽  
pp. 196-199 ◽  
Author(s):  
Ferdinando Manna ◽  
John R. Nimmo ◽  
Vincenzo Allocca ◽  
Pantaleone De Vita
Keyword(s):  

2016 ◽  
Author(s):  
Timothy M. Kresse ◽  
◽  
Phillip D. Hays ◽  
Katherine J. Knierim ◽  
Samantha R. Wacaster

2017 ◽  
Author(s):  
Andrew J. Luhmann ◽  
◽  
Susan L. Bilek ◽  
Ronni Grapenthin ◽  
Jonathan B. Martin

2020 ◽  
Author(s):  
Andrew Luhmann ◽  
◽  
Sophia M. Becker ◽  
Claire K. Browning ◽  
Lucy J. Dykhouse ◽  
...  
Keyword(s):  

Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 118
Author(s):  
Giovanni Ruggieri ◽  
Vincenzo Allocca ◽  
Flavio Borfecchia ◽  
Delia Cusano ◽  
Palmira Marsiglia ◽  
...  

In many Italian regions, and particularly in southern Italy, karst aquifers are the main sources of drinking water and play a crucial role in the socio-economic development of the territory. Hence, estimating the groundwater recharge of these aquifers is a fundamental task for the proper management of water resources, while also considering the impacts of climate changes. In the southern Apennines, the assessment of hydrological parameters that is needed for the estimation of groundwater recharge is a challenging issue, especially for the spatial and temporal inhomogeneity of networks of rain and air temperature stations, as well as the variable geomorphological features and land use across mountainous karst areas. In such a framework, the integration of terrestrial and remotely sensed data is a promising approach to limit these uncertainties. In this research, estimations of actual evapotranspiration and groundwater recharge using remotely sensed data gathered by the Moderate Resolution Imaging Spectrometer (MODIS) satellite in the period 2000–2014 are shown for karst aquifers of the southern Apennines. To assess the uncertainties affecting conventional methods based on empirical formulas, the values estimated by the MODIS dataset were compared with those calculated by Coutagne, Turc, and Thornthwaite classical empirical formulas, which were based on the recordings of meteorological stations. The annual rainfall time series of 266 rain gauges and 150 air temperature stations, recorded using meteorological networks managed by public agencies in the period 2000–2014, were considered for reconstructing the regional distributed models of actual evapotranspiration (AET) and groundwater recharge. Considering the MODIS AET, the mean annual groundwater recharge for karst aquifers was estimated to be about 448 mm·year−1. In contrast, using the Turc, Coutagne, and Thornthwaite methods, it was estimated as being 494, 533, and 437 mm·year−1, respectively. The obtained results open a new methodological perspective for the assessment of the groundwater recharge of karst aquifers at the regional and mean annual scales, allowing for limiting uncertainties and taking into account a spatial resolution greater than that of the existing meteorological networks. Among the most relevant results obtained via the comparison of classical approaches used for estimating evapotranspiration is the good matching of the actual evapotranspiration estimated using MODIS data with the potential evapotranspiration estimated using the Thornthwaite formula. This result was considered linked to the availability of soil moisture for the evapotranspiration demand due to the relevant precipitation in the area, the general occurrence of soils covering karst aquifers, and the dense vegetation.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1189
Author(s):  
Malihe Shirafkan ◽  
Zargham Mohammadi ◽  
Vianney Sivelle ◽  
David Labat

In this study, a synthetic modeling approach is proposed to quantify the effect of the amount and direction of the exchange flow on the karstic spring discharge fluctuations under different hydrologic conditions corresponding to high and low flow conditions. We hypothesis that the spring discharge fluctuations constitute a valuable proxy to understand the internal processes of the karst system. An ensemble of spring hydrographs was synthetically produced to highlight the effect of exchange flow by exploring the plausible range of variability of coefficients of exchange flow, conduit diameter, and matrix hydraulic conductivity. Moreover, the change of the rate of point recharge through the karst conduit allows for the quantifying of the sensibility of the spring hydrograph to the directions of exchange flow. We show that increasing the point recharge lies to a remarkable linear recession coefficient (β) as an indication of the conduit flow regime. However, a reduction in and/or lack of the point recharge caused the recession coefficient to change to exponential (α) due to the dominant effect of the matrix restrained flow regime and/or conduit-influenced flow regime. The simulations highlight that the exchange flow process from the conduit to the matrix occurred in a short period and over a restricted part of the conduit flow regime (CFR). Conversely, the exchange flow dumped from the matrix to the conduit occurs as a long-term process. A conceptual model is introduced to compare spring hydrographs’ characteristics (i.e., the peak discharge, the volume of baseflow, and the slope of the recession curve) under the various flow conditions with the directions of the exchange flow between the conduit and the matrix.


Sign in / Sign up

Export Citation Format

Share Document