Chapter 2Mode of Interaction of Articial Pulmonary Surfactant with an Amphiphilic α-Helical Peptide at the Air/Water Interface

2010 ◽  
pp. 31-60 ◽  
1995 ◽  
Vol 269 (4) ◽  
pp. L492-L497 ◽  
Author(s):  
T. M. McEachren ◽  
K. M. Keough

The influence of the acute inflammatory phase protein human C-reactive protein (CRP) on the adsorption of porcine pulmonary surfactant from a subphase into an air-water interface has been investigated. CRP was shown to detract from the ability of surfactant to rapidly adsorb to the air-water interface at a molar ratio of 0.03:1 (protein:phospholipid) (weight ratio, 0.5:1). On a weight basis, CRP was found to be more effective than fibrinogen at reducing the adsorption rate of surfactant. The effect of CRP required the presence of calcium and was reversed by the addition of phosphocholine in a concentration-dependent manner. The inhibition of surfactant adsorption by CRP was effectively eliminated by the addition of phosphocholine at a molar ratio of 300:1 (phosphocholine:CRP), but it was not diminished by the addition of identical molar ratios of o-phosphoethanolamine or DL-alpha-glycerophosphate at the same molar ratios. These data suggest that the potent inhibition of surfactant adsorption by CRP is primarily a result of a specific interaction between CRP and the phosphocholine headgroup of surfactant lipids in the subphase and that it can be reversed by the water-soluble CRP ligand, phosphocholine.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Tongtao Yue ◽  
Rujie Lv ◽  
Dongfang Xu ◽  
Yan Xu ◽  
Lu Liu ◽  
...  

Abstract Background Airborne nanoparticles can be inhaled and deposit in human alveoli, where pulmonary surfactant (PS) molecules lining at the alveolar air–water interface act as the first barrier against inhaled nanoparticles entering the body. Although considerable efforts have been devoted to elucidate the mechanisms underlying nanoparticle-PS interactions, our understanding on this important issue is limited due to the high complexity of the atmosphere, in which nanoparticles are believed to experience transformations that remarkably change the nanoparticles’ surface properties and states. By contrast with bare nanoparticles that have been extensively studied, relatively little is known about the interactions between PS and inhaled nanoparticles which already adsorb contaminants. In this combined experimental and computational effort, we investigate the joint interactions between PS and graphene-family materials (GFMs) with coexisting benzo[a]pyrene (BaP). Results Depending on the BaP concentration, molecular agglomeration, and graphene oxidation, different nanocomposite structures are formed via BaPs adsorption on GFMs. Upon deposition of GFMs carrying BaPs at the pulmonary surfactant (PS) layer, competition and cooperation of interactions between different components determines the interfacial processes including BaP solubilization, GFM translocation and PS perturbation. Importantly, BaPs adsorbed on GFMs are solubilized to increase BaP’s bioavailability. By contrast with graphene adhering on the PS layer to release part of adsorbed BaPs, more BaPs are released from graphene oxide, which induces a hydrophilic pore in the PS layer and shows adverse effect on the PS biophysical function. Translocation of graphene across the PS layer is facilitated by BaP adsorption through segregating it from contact with PS, while translocation of graphene oxide is suppressed by BaP adsorption due to the increase of surface hydrophobicity. Graphene extracts PS molecules from the layer, and the resultant PS depletion declines with graphene oxidation and BaP adsorption. Conclusion GFMs showed high adsorption capacity towards BaPs to form nanocomposites. Upon deposition of GFMs carrying BaPs at the alveolar air–water interface covered by a thin PS layer, the interactions of GFM-PS, GFM-BaP and BaP-PS determined the interfacial processes of BaP solubilization, GFM translocation and PS perturbation.


2010 ◽  
Vol 1798 (6) ◽  
pp. 1281-1284 ◽  
Author(s):  
Bárbara Olmeda ◽  
Laura Villén ◽  
Antonio Cruz ◽  
Guillermo Orellana ◽  
Jesus Perez-Gil

Sign in / Sign up

Export Citation Format

Share Document