o2 diffusion
Recently Published Documents


TOTAL DOCUMENTS

119
(FIVE YEARS 13)

H-INDEX

25
(FIVE YEARS 3)

Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1229
Author(s):  
Valeri Sonin ◽  
Egor Zhimulev ◽  
Aleksei Chepurov ◽  
Ivan Gryaznov ◽  
Anatoly Chepurov ◽  
...  

Diamond etching in high-temperature ambient-pressure experiments has been performed aimed to assess possible postimpact effects on diamonds in impact craters, for the case of the Popigai crater in Yakutia (Russia). The experiments with different etchants, including various combinations of silicate melts, air, and inert gases, demonstrated the diversity of microstructures on {111} diamond faces: negative or positive trigons, as well as hexagonal, round, or irregularly shaped etch pits and striation. The surface features obtained after etching experiments with kimberlitic diamonds are similar to those observed on natural impact diamonds with some difference due to the origin of the latter as a result of a martensitic transformation of graphite in target rocks. Extrapolated to natural impact diamonds, the experimental results lead to several inferences: (1) Diamond crystals experienced natural oxidation and surface graphitization during the pressure decrease after the impact event, while the molten target rocks remained at high temperatures. (2) Natural etching of diamonds in silicate melts is possible in a large range of oxidation states controlled by O2 diffusion. (3) Impact diamonds near the surface of molten target rocks oxidized at the highest rates, whereas those within the melt were shielded from the oxidizing agents and remained unchanged.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4942
Author(s):  
Florian Wesenauer ◽  
Christian Jordan ◽  
Mudassar Azam ◽  
Michael Harasek ◽  
Franz Winter

A series of porous clay samples prepared at different pretreatment temperatures have been tested in a diffusion chamber. Diffusivity and permeability were examined in a temperature range from ambient to 900 °C. Gaseous mixtures of O2, CO2, and N2 have been applied, as these species are the relevant gases in the context of clay brick firing and similar thermochemical processes. Diffusive transport characteristics have been determined by means of the mean transport-pore model, and permeability has been evaluated by Darcy’s law. CO2 diffusivity increased strongly with temperature, whereas O2 diffusion was limited to a certain level. It is proposed that one should consider CO2 surface diffusion in order to explain this phenomenon. The diffusion model was expanded and surface diffusion was included in the model equation. The results of the model fit reflected the important role of incorporated carbonates of the clay foundation in gas-phase (molecular or Knudsen) diffusivity. CO2 surface diffusion was observed to exhibit similar coefficients for two different investigated clays, and is therefore indicated as a property of natural clays. Permeability showed a progressive rise with temperature, in line with related literature.


2021 ◽  
Vol 224 (16) ◽  
Author(s):  
Graham R. Scott ◽  
Anne C. Dalziel

ABSTRACT Evolutionary physiology strives to understand how the function and integration of physiological systems influence the way in which organisms evolve. Studies of the O2 transport pathway – the integrated physiological system that transports O2 from the environment to mitochondria – are well suited to this endeavour. We consider the mechanistic underpinnings across the O2 pathway for the evolution of aerobic capacity, focusing on studies of artificial selection and naturally selected divergence among wild populations of mammals and fish. We show that evolved changes in aerobic capacity do not require concerted changes across the O2 pathway and can arise quickly from changes in one or a subset of pathway steps. Population divergence in aerobic capacity can be associated with the evolution of plasticity in response to environmental variation or activity. In some cases, initial evolutionary divergence of aerobic capacity arose exclusively from increased capacities for O2 diffusion and/or utilization in active O2-consuming tissues (muscle), which may often constitute first steps in adaptation. However, continued selection leading to greater divergence in aerobic capacity is often associated with increased capacities for circulatory and pulmonary O2 transport. Increases in tissue O2 diffusing capacity may augment the adaptive benefit of increasing circulatory O2 transport owing to their interactive influence on tissue O2 extraction. Theoretical modelling of the O2 pathway suggests that O2 pathway steps with a disproportionately large influence over aerobic capacity have been more likely to evolve, but more work is needed to appreciate the extent to which such physiological principles can predict evolutionary outcomes.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 309
Author(s):  
Eli Mansour ◽  
Andre C. Palma ◽  
Raisa G. Ulaf ◽  
Luciana C. Ribeiro ◽  
Ana Flavia Bernardes ◽  
...  

Background: Coronavirus disease 19 (COVID-19) can develop into a severe respiratory syndrome that results in up to 40% mortality. Acute lung inflammatory edema is a major pathological finding in autopsies explaining O2 diffusion failure and hypoxemia. Only dexamethasone has been shown to reduce mortality in severe cases, further supporting a role for inflammation in disease severity. SARS-CoV-2 enters cells employing angiotensin-converting enzyme 2 (ACE2) as a receptor, which is highly expressed in lung alveolar cells. ACE2 is one of the components of the cellular machinery that inactivates the potent inflammatory agent bradykinin, and SARS-CoV-2 infection could interfere with the catalytic activity of ACE2, leading to the accumulation of bradykinin. Methods: In this case control study, we tested two pharmacological inhibitors of the kinin–kallikrein system that are currently approved for the treatment of hereditary angioedema, icatibant, and inhibitor of C1 esterase/kallikrein, in a group of 30 patients with severe COVID-19. Results: Neither icatibant nor inhibitor of C1 esterase/kallikrein resulted in changes in time to clinical improvement. However, both compounds were safe and promoted the significant improvement of lung computed tomography scores and increased blood eosinophils, which are indicators of disease recovery. Conclusions: In this small cohort, we found evidence for safety and a beneficial role of pharmacological inhibition of the kinin–kallikrein system in two markers that indicate improved disease recovery.


Author(s):  
Michael G Allan ◽  
Morgan J McKee ◽  
Frank Marken ◽  
Moritz F Kuehnel

Solar water splitting into H2 and O2 is a promising approach to provide renewable fuels. However, the presence of O2 hampers H2 generation and most photocatalysts show a major drop...


Fuel ◽  
2020 ◽  
Vol 278 ◽  
pp. 118307 ◽  
Author(s):  
Jiabao Yang ◽  
Yan Gong ◽  
Qinghua Guo ◽  
Huiwen Zhu ◽  
Fuchen Wang ◽  
...  

2020 ◽  
Vol 10 (19) ◽  
pp. 6694
Author(s):  
GoonHo Kim ◽  
Ju-Hong Cha ◽  
Jee-Hun Jeong ◽  
Ho-Jun Lee

Gaseous agents are widely used in fire extinguishing systems (FESs) when water extinguishing agents are unavailable. The extinguishing ability of the FES-gaseous agent is determined by the retention time (hold time) at which its concentration is maintained. In particular, the retention time of the inert agent is determined by the O2 inflow from the outside. However, current theoretical models for inert agents do not provide an accurate model for the diffusion of incoming O2. Specifically, because the theoretical equations do not include O2 diffusion or include too large a value, there is a large difference between the measured and theoretical retention times. Therefore, in this study, accurate O2 diffusion was verified through experimental and numerical analyses using three types of deactivators and reflected in the existing theoretical model. O2 diffusion was analyzed through the interface slope α and diffusion velocity vd. As a result, this proposed method can predict the retention time more accurately than existing theoretical models.


2020 ◽  
Vol 123 (3) ◽  
pp. 357-368
Author(s):  
R.N. Hansen

ABSTRACT Acid mine drainage (AMD) and associated metal(loid) and SO42- pollution of soil, surface water and groundwater is ubiquitously associated with tailings material generated by Au mining in the Witwatersrand Basin in South Africa. The individual geochemical processes responsible for the AMD generation in this tailings material are relatively well understood. What is less clear are how these different processes interact as a network within the tailings system. Process network modelling (PNM) is a tool that can be used to study such interactive and complex networks of geochemical processes, especially when stochastic methods, e.g. Monte Carlo simulation, are included in the model development. Secondary mineral phase supersaturation requirements from classical nucleation theory are also built into the model. A PNM was developed for a tailings facility in the Witwatersrand gold basin focussing on pH, Fe(total) and SO42- concentrations in the tailings pore water and the relationship of these parameters to the dissolution of pyrite, O2 diffusion into the tailings, oxidation of Fe2+ and the precipitation of secondary minerals, specifically goethite and jarosite. The model indicated that AMD conditions develop fairly rapidly after the sulphidic material is exposed to the Earth’s oxygenated atmosphere. The concentration of H+, and hence the pH, in the tailings pore water is controlled by a number of feedbacks. The positive feedback, implying addition of H+, is the dissolution of pyrite and the precipitation of the secondary Fe3+-bearing minerals goethite and jarosite. Jarosite precipitation was shown to increase the median H+ addition rate by ~2%. The negative feedback, i.e. decrease in H+, is the oxidation of Fe2+ to Fe3+. This feedback loop produces a net excess of H+. Together with the buffer effect of goethite and jarosite precipitation, system steady-state conditions are eventually achieved with respect to pH. The pore water SO42- concentration is controlled by the positive and negative feedback of pyrite dissolution and jarosite precipitation. This feedback loop produces a large excess of SO42- and steady state conditions can only be achieved if SO42- is physically removed from the tailings system, e.g. seepage to groundwater. Oxidation of the Fe2+ produced by pyrite dissolution to Fe3+ is the only positive feedback for tailings pore water Fe3+ concentrations. The negative feedbacks are precipitation of goethite and jarosite and the oxidation of pyrite by Fe3+. The former effect is delayed as these phases first have to achieve a certain level of supersaturation in the tailings pore water solution before they can form. The precipitation of jarosite and goethite, by removing Fe3+ from solution, decreases the effect of Fe3+ pyrite oxidation causing O2 to remain the dominant oxidation mechanism. This feedback loop produces a small excess of Fe3+ over time, however, the model is very sensitive to other factors, e.g. O2 diffusion deeper into the tailings facility.


Author(s):  
Eli Mansour ◽  
Andre C Palma ◽  
Raisa G Ulaf ◽  
Luciana C Ribeiro ◽  
Ana Flavia Bernardes ◽  
...  

Coronavirus disease-19 (COVID-19) can develop into a severe respiratory syndrome that results in up to 40% mortality. Acute lung inflammatory edema is a major pathological finding in autopsies explaining O2 diffusion failure and hypoxemia. Only dexamethasone has been shown to reduce mortality in severe cases, further supporting a role for inflammation in disease severity. SARS-CoV-2 enters cells employing angiotensin converting enzyme 2 (ACE2) as a receptor, which is highly expressed in lung alveolar cells. ACE2 is one of the components of the cellular machinery that inactivates the potent inflammatory agent bradykinin, and SARS-CoV-2 infection could interfere with the catalytic activity of ACE2, leading to accumulation of bradykinin. In this open-label, randomized clinical trial, we tested two pharmacological inhibitors of the kinin-kallikrein system that are currently approved for the treatment of hereditary angioedema, icatibant and inhibitor of C1 esterase/kallikrein, in a group of 30 patients with severe COVID-19. Neither icatibant nor inhibitor of C1 esterase/kallikrein resulted in significant changes in disease mortality and time to clinical improvement. However, both compounds promoted significant improvement of lung computed tomography scores and increased blood eosinophils, which has been reported as an indicator of disease recovery. In this small cohort, we found evidence for a beneficial role of pharmacological inhibition of the kinin-kallikrein system in two markers that indicate improved disease recovery.


Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2882 ◽  
Author(s):  
Ahmed M. Rozza ◽  
Dóra K. Menyhárd ◽  
Julianna Oláh

Gas sensing is crucial for both prokaryotes and eukaryotes and is primarily performed by heme-based sensors, including H-NOX domains. These systems may provide a new, alternative mode for transporting gaseous molecules in higher organisms, but for the development of such systems, a detailed understanding of the ligand-binding properties is required. Here, we focused on ligand migration within the protein matrix: we performed molecular dynamics simulations on three bacterial (Ka, Ns and Cs) H-NOX proteins and studied the kinetics of CO, NO and O2 diffusion. We compared the response of the protein structure to the presence of ligands, diffusion rate constants, tunnel systems and storage pockets. We found that the rate constant for diffusion decreases in the O2 > NO > CO order in all proteins, and in the Ns > Ks > Cs order if single-gas is considered. Competition between gases seems to seriously influence the residential time of ligands spent in the distal pocket. The channel system is profoundly determined by the overall fold, but the sidechain pattern has a significant role in blocking certain channels by hydrophobic interactions between bulky groups, cation–π interactions or hydrogen bonding triads. The majority of storage pockets are determined by local sidechain composition, although certain functional cavities, such as the distal and proximal pockets are found in all systems. A major guideline for the design of gas transport systems is the need to chemically bind the gas molecule to the protein, possibly joining several proteins with several heme groups together.


Sign in / Sign up

Export Citation Format

Share Document