interfacial processes
Recently Published Documents


TOTAL DOCUMENTS

181
(FIVE YEARS 40)

H-INDEX

27
(FIVE YEARS 2)

Author(s):  
Iwan Vaughan Roberts ◽  
Roberto Donno ◽  
Francesco Galli ◽  
Christopher Yusef Leon Valdivieso ◽  
Alessandro Siani ◽  
...  

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Tongtao Yue ◽  
Rujie Lv ◽  
Dongfang Xu ◽  
Yan Xu ◽  
Lu Liu ◽  
...  

Abstract Background Airborne nanoparticles can be inhaled and deposit in human alveoli, where pulmonary surfactant (PS) molecules lining at the alveolar air–water interface act as the first barrier against inhaled nanoparticles entering the body. Although considerable efforts have been devoted to elucidate the mechanisms underlying nanoparticle-PS interactions, our understanding on this important issue is limited due to the high complexity of the atmosphere, in which nanoparticles are believed to experience transformations that remarkably change the nanoparticles’ surface properties and states. By contrast with bare nanoparticles that have been extensively studied, relatively little is known about the interactions between PS and inhaled nanoparticles which already adsorb contaminants. In this combined experimental and computational effort, we investigate the joint interactions between PS and graphene-family materials (GFMs) with coexisting benzo[a]pyrene (BaP). Results Depending on the BaP concentration, molecular agglomeration, and graphene oxidation, different nanocomposite structures are formed via BaPs adsorption on GFMs. Upon deposition of GFMs carrying BaPs at the pulmonary surfactant (PS) layer, competition and cooperation of interactions between different components determines the interfacial processes including BaP solubilization, GFM translocation and PS perturbation. Importantly, BaPs adsorbed on GFMs are solubilized to increase BaP’s bioavailability. By contrast with graphene adhering on the PS layer to release part of adsorbed BaPs, more BaPs are released from graphene oxide, which induces a hydrophilic pore in the PS layer and shows adverse effect on the PS biophysical function. Translocation of graphene across the PS layer is facilitated by BaP adsorption through segregating it from contact with PS, while translocation of graphene oxide is suppressed by BaP adsorption due to the increase of surface hydrophobicity. Graphene extracts PS molecules from the layer, and the resultant PS depletion declines with graphene oxidation and BaP adsorption. Conclusion GFMs showed high adsorption capacity towards BaPs to form nanocomposites. Upon deposition of GFMs carrying BaPs at the alveolar air–water interface covered by a thin PS layer, the interactions of GFM-PS, GFM-BaP and BaP-PS determined the interfacial processes of BaP solubilization, GFM translocation and PS perturbation.


2021 ◽  
pp. 91-186
Author(s):  
Noémi M. Nagy ◽  
József Kónya

2021 ◽  
Author(s):  
Tongtao Yue ◽  
Rujie Lv ◽  
Dongfang Xu ◽  
Yan Xu ◽  
Lu Liu ◽  
...  

Abstract Background: Airborne nanoparticles can be inhaled and deposit in human alveoli, where pulmonary surfactant (PS) molecules line at the alveolar air-water interface to act as the first barrier against inhaled nanoparticles entering the body. Although considerable efforts have been made to elucidate the mechanisms underlying nanoparticle-PS interactions, our understanding on this important issue is limited due to the high complexity of the atmosphere, in which nanoparticles are believed to experience transformations that remarkably change the nanoparticles’ surface properties and states. By contrast with bare nanoparticles that have been extensively studied, relatively little is known about the interactions between PS and inhaled nanoparticles which already adsorb contaminants. In this combined experimental and computational effort, we investigate the joint interactions between PS and graphene with coexisting benzo[a]pyrene (BaP).Results: Depending on the BaP concentration and molecular agglomeration, different nanocomposite structures are formed via BaPs adsorption on graphene. Upon deposition of graphene carrying BaPs at the pulmonary surfactant (PS) layer, competition of interactions between different components determines the interfacial processes including BaP solubilization, graphene translocation and PS perturbation. Importantly, BaP adsorbed on graphene is solubilized to increase its bioavailability and inhibit the PS biophysical function. Translocation of graphene across the PS layer is facilitated by BaP adsorption through segregating it from contact with PS, while translocation of graphene oxide is suppressed due to increase of the surface hydrophobicity. Graphene extracts PS molecules from the layer, and the resultant PS depletion declines with graphene oxidation and BaP adsorption.Conclusion: Graphene showed high capacity of adsorbing BaPs to form nanocomposites, which were inhaled and deposit in alveoli, where competition of interactions between different components determined the interfacial processes of BaP solubilization, graphene translocation and PS perturbation.


2021 ◽  
Vol 7 (34) ◽  
pp. eabi7498
Author(s):  
Yiyuan Zhang ◽  
Zhandong Huang ◽  
Zheren Cai ◽  
Yuqing Ye ◽  
Zheng Li ◽  
...  

Fluid interfaces are omnipresent in nature. Engineering the fluid interface is essential to study interfacial processes for basic research and industrial applications. However, it remains challenging to precisely control the fluid interface because of its fluidity and instability. Here, we proposed a magnetic-actuated “capillary container” to realize three-dimensional (3D) fluid interface creation and programmable dynamic manipulation. By wettability modification, 3D fluid interfaces with predesigned sizes and geometries can be constructed in air, water, and oils. Multiple motion modes were realized by adjusting the container’s structure and magnetic field. Besides, we demonstrated its feasibility in various fluids by performing selective fluid collection and chemical reaction manipulations. The container can also be encapsulated with an interfacial gelation reaction. Using this process, diverse free-standing 3D membranes were produced, and the dynamic release of riboflavin (vitamin B2) was studied. This versatile capillary container will provide a promising platform for open microfluidics, interfacial chemistry, and biomedical engineering.


2021 ◽  
Author(s):  
Jifang Zhang ◽  
Qiyuan Lin ◽  
Zhenlei Wang ◽  
Haowen Liu ◽  
Yuegang Zhang

Achieving efficient solar water splitting using hematite (α-Fe2O3), one of the most promising candidates for photoanodes, requires photogenerated holes to be efficiently used for water oxidation. However, this goal is obstructed by multiple undesirable recombination processes, as well as insufficient fundamental mechanistic understandings of water oxidation kinetics, particularly as to the nature of reaction pathways and possible reaction intermediates. Here we spectroelectro-chemically identify some of the most critical interfacial processes which determine the photoelectrocatalytic efficiencies of water oxidation, for hematite films with varied surface properties by tailoring the doping level of titanium. The spectroscopic signals of the processes inactive for water oxidation, including oxidation of intra-gap Fe2+ states and Fermi level pinning, are successfully distinguished from that of the active reaction intermediate, Fe(IV)=O. In addition, our kinetic analyses reveal two water oxidation pathways, of which the direct hole transfer mechanism becomes dominant over the surface states-mediated mechanism when the hematite surface is reconstructed by high levels of titanium dopants.


Sign in / Sign up

Export Citation Format

Share Document