scholarly journals Developmental Aspects of Renal β-Amino Acid Transport. IV. Brush Border Membrane Response to Altered Intake of Sulfur Amino Acids

1984 ◽  
Vol 18 (7) ◽  
pp. 611-618 ◽  
Author(s):  
Russell W Chesney ◽  
Naomi Gusowski ◽  
Mary Theissen
1989 ◽  
Vol 143 (1) ◽  
pp. 87-100
Author(s):  
GIORGIO M. HANOZET ◽  
BARBARA GIORDANA ◽  
V. FRANCA SACCHI ◽  
PAOLO PARENTI

The presence of different potassium-dependent amino acid transport systems in the luminal membrane of the larval midgut of Philosamia cynthia Drury (Saturnidae, Lepidoptera) was investigated by means of countertransport experiments performed with brush-border membrane vesicles. The vesicles were preloaded with 14 different unlabelled amino acids, whose ability to elicit an intravesicular accumulation over the equilibrium value of six labelled amino acids (L-alanine, L-leucine, L-phenylalanine, L-glutamic acid, L-lysine and L-histidine) was tested. For histidine, the results were compared with those obtained from inhibition experiments, in which the same 14 amino acids were used as inhibitors on the cis side of the brush-border membrane. The data demonstrate the presence in the lepidopteran luminal membrane of distinct transport pathways for lysine and glutamic acid. The transport of most neutral amino acids, with the exclusionof glycine and proline, seems to occur through a system that may be similar to the neutral brush-border system (NBB) found in mammalian intestinal membranes. This system is also able to handle histidine.


1989 ◽  
Vol 257 (3) ◽  
pp. R494-R500 ◽  
Author(s):  
B. Giordana ◽  
V. F. Sacchi ◽  
P. Parenti ◽  
G. M. Hanozet

Experiments with intestinal brush-border membrane vesicles from lepidopteran larvae disclosed the occurrence of unique cotransporter proteins that use K+ as the driver cation for the transmembrane transfer of amino acids across the luminal border of midgut enterocytes. Six apical membrane amino acid transport systems have been identified. These systems are 1) a neutral amino acid transporter with a broad spectrum of interactions with most neutral amino acids, which is highly concentrative, strongly K+- and electrical potential-dependent, poorly stereospecific, and recognizes histidine, but not proline, glycine, or alpha-(methylamino)isobutyric acid (MeAIB); 2) a specific system for L-proline; 3) a specific system for glycine with a higher affinity for Na+ than for K+; 4) a specific system for L-lysine, which is dependent on membrane potential, is highly sensitive to external K+, and does not interact with L-arginine or neutral amino acids; 5) a specific K+-dependent process for glutamic acid, which does not recognize aspartic acid; and last, 6) an apparently unique K+- driven mechanism for D-alanine, which is potential-dependent and strongly stereospecific.


1986 ◽  
Vol 251 (1) ◽  
pp. F125-F131
Author(s):  
R. W. Chesney ◽  
N. Gusowski ◽  
M. Padilla ◽  
S. Lippincott

Alterations in the intake of sulfur amino acids (SAA) changes the rat renal brush-border membrane uptake of the beta-amino acid, taurine. A low-SAA diet enhances and a high-taurine diet reduces uptake (Chesney et al., Kidney Int. 24: 588-594, 1983). Neither the low-SAA diet nor the high-taurine diet alters the time course or concentration-dependent accumulation of the sulfur amino acids methionine and cystine or of inorganic sulfate. By contrast the uptake of beta-alanine, another beta-amino acid that competes with taurine, is greater in animals on the low-SAA diet. The high-taurine diet does not change beta-alanine uptake. The plasma levels of taurine are altered by dietary change, but not the values for methionine and cystine. This study indicates that renal adaptation is expressed for beta-alanine, a nonsulfur-containing beta-amino acid. By contrast, methionine, cystine, and sulfate, which participate in a variety of synthetic and conjugative processes, are not conserved by the renal brush-border surface following ingestion of either a low-methionine and -cystine diet or high-taurine diet.


1993 ◽  
Vol 64 (7) ◽  
pp. 700-708
Author(s):  
Kiyoshi TAJIMA ◽  
Ryozo TAKADA ◽  
Toru MORI ◽  
Hisao ITABASHI ◽  
Kei-ichiro SUGIMURA

Sign in / Sign up

Export Citation Format

Share Document