renal brush border membrane
Recently Published Documents


TOTAL DOCUMENTS

389
(FIVE YEARS 2)

H-INDEX

38
(FIVE YEARS 0)

Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1677
Author(s):  
Aiying Yu ◽  
Jingfu Zhao ◽  
Shiv Pratap S. Yadav ◽  
Bruce A. Molitoris ◽  
Mark C. Wagner ◽  
...  

Chronic kidney disease (CKD) is defined by a reduced renal function i.e., glomerular filtration rate (GFR), and the presence of kidney damage is determined by measurement of proteinuria or albuminuria. Albuminuria increases with age and can result from glomerular and/or proximal tubule (PT) alterations. Brush-border membranes (BBMs) on PT cells play an important role in maintaining the stability of PT functions. The PT BBM, a highly dynamic, organized, specialized membrane, contains a variety of glycoproteins required for the functions of PT. Since protein glycosylation regulates many protein functions, the alteration of glycosylation due to the glycan changes has attracted more interests for a variety of disease studies recently. In this work, liquid chromatography-tandem mass spectrometry was utilized to analyze the abundances of permethylated glycans from rats under control to mild CKD, severe CKD, and diabetic conditions. The most significant differences were observed in sialylation level with the highest present in the severe CKD and diabetic groups. Moreover, high mannose N-glycans was enriched in the CKD BBMs. Characterization of all the BBM N-glycan changes supports that these changes are likely to impact the functional properties of the dynamic PT BBM. Further, these changes may lead to the potential discovery of glycan biomarkers for improved CKD diagnosis and new avenues for therapeutic treatments.


Author(s):  
M. A. Kanadi ◽  
A. J. Alhassan ◽  
A. I. Yaradua ◽  
A. Nasir ◽  
A. M. Wudil

Aim: To investigate the effect of the chromatographic fractions of Carica papaya seed on KBrO3 –induced reduction in the activities of renal brush border membrane (BBM) marker enzymes and the changes in activities of some enzymes of carbohydrate metabolism in the kidney of rats. Study Design: twenty male Wistar rats were divided into four groups, five rats per group; normal control, KBrO3 control, papaya fraction control and KBrO3 group administered with 126mg/kg body weight of the most active fraction of partially purified methanol extract of C. papaya for 48 hours. Place and Duration of Study: Department of Biochemistry Laboratory, Faculty of Basic Medical Sciences, Bayero University Kano, Nigeria. Methodology: The activities of renal BBM marker enzymes: γ-glutamyl transferase, alkaline phosphatase, maltase and leucine aminopeptidase were assayed in homogenates of renal cortex and medulla, and in brush border membrane vesicle (BBMV) isolated from cortex using standard methods. Furthermore, activities of the following enzymes representing different pathways of carbohydrate metabolism were determined in renal homogenates: hexokinase (HK), lactate dehydrogenase (LDH), malate dehydrogenase (MDH), glucose 6-phosphatase (G6P), fructose 1,6-bisphosphatase (FBP), glucose 6-phosphate dehydrogenase (G6PD) and malic enzyme (ME). Results: KBrO3 administration significantly (P<0.05) decreases the activities of all the BBM marker enzymes in renal homogenates and BBMV. It also decreases the activities of MDH, G6P, FBP and G6PD, and significantly increases (P<0.05) that of HK, LDH and ME in renal homogenates however co-administration of most active fraction of C. papaya  seed prevented all the KBrO3 -induced changes in these biochemical parameters. Conclusion: Chromatographic fractions of C. papaya seed extract possesses potent phytochemicals that could prevent KBrO3 –induced reduction in activities of renal BBM marker enzymes and the changes in enzymes of carbohydrate metabolism studied and therefore could be analyzed further to isolate the bioactive compounds.


2018 ◽  
Vol 315 (2) ◽  
pp. F353-F363 ◽  
Author(s):  
Naomi C. Boisvert ◽  
Chet E. Holterman ◽  
Alexey Gutsol ◽  
Josée Coulombe ◽  
Wanling Pan ◽  
...  

Loss of ubiquitin COOH-terminal hydrolase L1 (UCHL1), a deubiquitinating enzyme required for neuronal function, led to hyperphosphatemia accompanied by phosphaturia in mice, while calcium homeostasis remained intact. We therefore investigated the mechanisms underlying the phosphate imbalance in Uchl1−/− mice. Interestingly, phosphaturia was not a result of lower renal brush border membrane sodium-phosphate cotransporter expression as sodium-phosphate cotransporter 2a and 2c expression levels was similar to wild-type levels. Plasma parathyroid hormone and fibroblast growth factor 23 levels were not different; however, fibroblast growth factor 23 mRNA levels were significantly increased in femur homogenates from Uchl1−/− mice. Full-length and soluble α-klotho levels were comparable in kidneys from wild-type and Uchl1−/− mice; however, soluble α-klotho was reduced in Uchl1−/− mice urine. Consistent with unchanged components of 1,25(OH)2D3 metabolism (i.e., CYP27B1 and CYP24A1), sodium-phosphate cotransporter 2b protein levels were not different in ileum brush borders from Uchl1−/− mice, suggesting that the intestine is not the source of hyperphosphatemia. Nonetheless, when Uchl1−/− mice were fed a low-phosphate diet, plasma phosphate, urinary phosphate, and fractional excretion of phosphate were significantly attenuated and comparable to levels of low-phosphate diet-fed wild-type mice. Our findings demonstrate that Uchl1-deleted mice exhibit perturbed phosphate homeostasis, likely consequent to decreased urinary soluble α-klotho, which can be rescued with a low-phosphate diet. Uchl1−/− mice may provide a useful mouse model to study mild perturbations in phosphate homeostasis.


2016 ◽  
Vol 311 (2) ◽  
pp. F343-F351 ◽  
Author(s):  
Peijian He ◽  
Luqing Zhao ◽  
Yi Ran No ◽  
Serhan Karvar ◽  
C. Chris Yun

Na+/H+ exchanger (NHE)3, a major Na+ transporter in the luminal membrane of the proximal tubule, is subject to ANG II regulation in renal Na+/fluid absorption and blood pressure control. We have previously shown that inositol 1,4,5-trisphosphate receptor-binding protein released with inositol 1,4,5-trisphosphate (IRBIT) mediates ANG II-induced exocytosis of NHE3 in cultured proximal tubule epithelial cells. In searching for scaffold protein(s) that coordinates with IRBIT in NHE3 trafficking, we found that NHE regulatory factor (NHERF)1, NHE3, and IRBIT proteins were coexpressed in the same macrocomplexes and that loss of ANG II type 1 receptors decreased their expression in the renal brush-border membrane. We found that NHERF1 was required for ANG II-mediated forward trafficking and activation of NHE3 in cultured cells. ANG II induced a concomitant increase of NHERF1 interactions with NHE3 and IRBIT, which were abolished when the NHERF1 PDZ1 domain was removed. Overexpression of a yellow fluorescent protein-NHERF1 construct that lacks PDZ1, but not PDZ2, failed to exaggerate the ANG II-dependent increase of NHE3 expression in the apical membrane. Moreover, exogenous expression of PDZ1 exerted a dominant negative effect on NHE3 activation by ANG II. We further demonstrated that IRBIT was indispensable for the ANG II-provoked increase in NHERF1-NHE3 interactions and that phosphorylation of IRBIT at Ser68 was necessary for the assembly of the NHEF1-IRBIT-NHE3 complex. Taken together, our findings suggest that NHERF1 mediates ANG II-induced activation of renal NHE3, which requires coordination between IRBIT and the NHERF1 PDZ1 domain in binding and transporting NHE3.


Sign in / Sign up

Export Citation Format

Share Document